Improving the Mixed Formulation for Meshless Local Petrov-Galerkin Method

被引:15
|
作者
Fonseca, Alexandre R. [1 ]
Correa, Bruno C. [2 ]
Silva, Elson J. [2 ]
Mesquita, Renato C. [2 ]
机构
[1] Fed Univ Jequitinhonha & Mucuri Valleys, Dept Comp, BR-39100000 Diamantina, Brazil
[2] Univ Fed Minas Gerais, Dept Elect Engn, BR-31270010 Belo Horizonte, MG, Brazil
关键词
Boundary conditions; meshless methods; mixed formulation; meshless local Petrov-Galerkin method (MLPG); ELEMENT;
D O I
10.1109/TMAG.2010.2043513
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The meshless local Petrov-Galerkin method (MLPG) with a mixed formulation to impose Dirichlet boundary conditions is investigated in this paper. We propose the use of Shepard functions for inner nodes combined with the radial point interpolation method with polynomial terms (RPIMp) for nodes over the Dirichlet boundaries. Whereas the Shepard functions have lower computational costs, the RPIMp imposes the essential boundary conditions in a direct manner. Results show that the proposed technique leads to a good tradeoff between computational time and precision.
引用
收藏
页码:2907 / 2910
页数:4
相关论文
共 50 条
  • [1] A wachspress meshless local Petrov-Galerkin method
    Barry, W
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2004, 28 (05) : 509 - 523
  • [2] Meshless local Petrov-Galerkin formulation for problems in composite micromechanics
    Dang, Thi D.
    Sankar, Bhavani V.
    [J]. AIAA JOURNAL, 2007, 45 (04) : 912 - 921
  • [3] An accurate solution to the meshless local Petrov-Galerkin formulation in elastodynamics
    Chien, CC
    Wu, TY
    [J]. JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 2004, 27 (04) : 463 - 471
  • [4] A meshless local Petrov-Galerkin scaled boundary method
    Deeks, AJ
    Augarde, CE
    [J]. COMPUTATIONAL MECHANICS, 2005, 36 (03) : 159 - 170
  • [5] Error assessment in the meshless local Petrov-Galerkin method
    Pannachet, T
    Barry, W
    Askes, H
    [J]. COMPUTATIONAL MECHANICS, VOLS 1 AND 2, PROCEEDINGS: NEW FRONTIERS FOR THE NEW MILLENNIUM, 2001, : 989 - 994
  • [6] Meshless local Petrov-Galerkin method in anisotropic elasticity
    Sladek, J
    Sladek, V
    Atluri, SN
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2004, 6 (05): : 477 - 489
  • [7] Meshless local Petrov-Galerkin method for the laminated plates
    [J]. Xiong, Y. (yuanbox@msn.com), 2005, Beijing University of Aeronautics and Astronautics (BUAA) (22):
  • [8] CUDA Approach for Meshless Local Petrov-Galerkin Method
    Correa, Bruno C.
    Mesquita, Renato C.
    Amorim, Lucas P.
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2015, 51 (03)
  • [9] A meshless local Petrov-Galerkin scaled boundary method
    A. J. Deeks
    C. E. Augarde
    [J]. Computational Mechanics, 2005, 36 : 159 - 170
  • [10] Meshless local Petrov-Galerkin method for plane piezoelectricity
    Sladek, J.
    Sladek, V.
    Zhang, Ch.
    Garcia-Sanche, F.
    Wuensche, M.
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2006, 4 (02): : 109 - 117