A MESHLESS LOCAL PETROV-GALERKIN METHOD FOR GEOMETRICALLY NONLINEAR PROBLEMS

被引:1
|
作者
Xiong Yuanbo Long Shuyao Hu De’an Li Guangyao Department of Engineering Mechanics
机构
基金
中国国家自然科学基金;
关键词
local Petrov-Galerkin method; moving least square approximation; total Lagranian method; geometrically nonlinear problems;
D O I
暂无
中图分类号
TB113 [几何的应用];
学科分类号
0701 ; 070104 ;
摘要
Nonlinear formulations of the meshless local Petrov-Galerkin (MLPG) method are presented for geometrically nonlinear problems. The method requires no mesh in computation and therefore avoids mesh distortion difficulties in the large deformation analysis. The essential boundary conditions in the present formulation are imposed by a penalty method. An incremental and iterative solution procedure is used to solve geometrically nonlinear problems. Several examples are presented to demonstrate the effectiveness of the method in geometrically nonlinear problems analysis. Numerical results show that the MLPG method is an effective one and that the values of the unknown variable are quite accurate.
引用
收藏
页码:348 / 356
页数:9
相关论文
共 50 条
  • [1] A meshless local Petrov-Galerkin method for geometrically nonlinear problems
    Xiong, YB
    Long, SY
    Hu, DA
    Li, GY
    [J]. ACTA MECHANICA SOLIDA SINICA, 2005, 18 (04) : 348 - 356
  • [2] MESHLESS LOCAL PETROV-GALERKIN METHOD FOR NONLINEAR HEAT CONDUCTION PROBLEMS
    Thakur, Harishchandra
    Singh, K. M.
    Sahoo, P. K.
    [J]. NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2009, 56 (05) : 393 - 410
  • [3] An application of the local Petrov-Galerkin method in solving geometrically nonlinear problems
    Xiong, Y. B.
    Long, S. Y.
    Hu, D. A.
    Li, G. Y.
    [J]. COMPUTATIONAL METHODS, PTS 1 AND 2, 2006, : 1509 - +
  • [4] Meshless local Petrov-Galerkin method for the solution of nonlinear boundary value problems
    Hu, De-An
    Long, Shu-Yao
    Han, Xu
    [J]. Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2007, 34 (02): : 33 - 36
  • [5] A wachspress meshless local Petrov-Galerkin method
    Barry, W
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2004, 28 (05) : 509 - 523
  • [6] The complex variable meshless local Petrov-Galerkin method for elastodynamic problems
    Dai, Baodong
    Wang, Qifang
    Zhang, Weiwei
    Wang, Linghui
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 243 : 311 - 321
  • [7] A meshless local Petrov-Galerkin method for elasto-plastic problems
    Xiong, Y. B.
    Long, S. Y.
    Liu, K. Y.
    Li, G. Y.
    [J]. COMPUTATIONAL METHODS, PTS 1 AND 2, 2006, : 1477 - +
  • [8] Meshless local discontinuous petrov-galerkin method with application to blasting problems
    Qiang H.
    Gao W.
    [J]. Transactions of Tianjin University, 2008, 14 (5) : 376 - 383
  • [9] Finite volume meshless local Petrov-Galerkin method in elastodynamic problems
    Moosavi, M. R.
    Khelil, A.
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2009, 33 (8-9) : 1016 - 1021
  • [10] Inverse heat conduction problems by meshless local Petrov-Galerkin method
    Sladek, J.
    Sladek, V.
    Hon, Y. C.
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2006, 30 (08) : 650 - 661