A REGULARIZATION PARAMETER FOR NONSMOOTH TIKHONOV REGULARIZATION

被引:48
|
作者
Ito, Kazufumi [1 ,2 ]
Jin, Bangti [3 ,4 ]
Takeuchi, Tomoya [1 ,2 ]
机构
[1] N Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USA
[2] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[3] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[4] Texas A&M Univ, Inst Appl Math & Computat Sci, College Stn, TX 77843 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2011年 / 33卷 / 03期
关键词
regularization parameter; nonsmooth functional; value function; error estimate; TOTAL VARIATION MINIMIZATION; CONVEX VARIATIONAL REGULARIZATION; ILL-POSED PROBLEMS; CONVERGENCE-RATES; BANACH-SPACES; IMAGE-RESTORATION; CONSTRAINTS; CHOICE;
D O I
10.1137/100790756
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we develop a novel rule for choosing regularization parameters in non-smooth Tikhonov functionals. It is solely based on the value function and applicable to a broad range of nonsmooth models, and it extends one known criterion. A posteriori error estimates of the approximations are derived. An efficient numerical algorithm for computing the minimizer is developed, and its convergence properties are discussed. Numerical results for several common nonsmooth models are presented, including deblurring natural images. The numerical results indicate the rule can yield results comparable with those achieved with the discrepancy principle and the optimal choice, and the algorithm merits a fast and steady convergence.
引用
收藏
页码:1415 / 1438
页数:24
相关论文
共 50 条
  • [41] Automatic balancing parameter selection for Tikhonov-TV regularization
    Gholami, Ali
    Gazzola, Silvia
    BIT NUMERICAL MATHEMATICS, 2022, 62 (04) : 1873 - 1898
  • [42] New Rule for Choice of the Regularization Parameter in (Iterated) Tikhonov Method
    Raus, T.
    Hamarik, U.
    MATHEMATICAL MODELLING AND ANALYSIS, 2009, 14 (02) : 187 - 198
  • [43] A parameter choice rule for Tikhonov regularization based on predictive risk
    Benvenuto, Federico
    Jin, Bangti
    INVERSE PROBLEMS, 2020, 36 (06)
  • [44] CONVERGENCE OF HEURISTIC PARAMETER CHOICE RULES FOR CONVEX TIKHONOV REGULARIZATION
    Kindermann, Stefan
    Raik, Kemal
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (03) : 1773 - 1800
  • [45] Tikhonov regularization based on near-optimal regularization parameter with application to capacitance tomography image reconstruction
    Sun, Ning
    Peng, Li-Hui
    Zhang, Bao-Fen
    Shuju Caiji Yu Chuli/Journal of Data Acquisition and Processing, 2004, 19 (04): : 429 - 432
  • [46] Extrapolation Techniques of Tikhonov Regularization
    Xiao, Tingyan
    Zhao, Yuan
    Su, Guozhong
    OPTIMIZATION AND REGULARIZATION FOR COMPUTATIONAL INVERSE PROBLEMS AND APPLICATIONS, 2010, : 107 - 126
  • [47] Nonstationary Iterated Tikhonov Regularization
    M. Hanke
    C. W. Groetsch
    Journal of Optimization Theory and Applications, 1998, 98 : 37 - 53
  • [48] Nonstationary iterated Tikhonov regularization
    Hanke, M
    Groetsch, CW
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1998, 98 (01) : 37 - 53
  • [49] Iterated fractional Tikhonov regularization
    Bianchi, Davide
    Buccini, Alessandro
    Donatelli, Marco
    Serra-Capizzano, Stefano
    INVERSE PROBLEMS, 2015, 31 (05)
  • [50] Tikhonov regularization with nonnegativity constraint
    Calvetti, D
    Lewis, B
    Reichel, L
    Sgallari, F
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2004, 18 : 153 - 173