A REGULARIZATION PARAMETER FOR NONSMOOTH TIKHONOV REGULARIZATION

被引:48
|
作者
Ito, Kazufumi [1 ,2 ]
Jin, Bangti [3 ,4 ]
Takeuchi, Tomoya [1 ,2 ]
机构
[1] N Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USA
[2] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[3] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[4] Texas A&M Univ, Inst Appl Math & Computat Sci, College Stn, TX 77843 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2011年 / 33卷 / 03期
关键词
regularization parameter; nonsmooth functional; value function; error estimate; TOTAL VARIATION MINIMIZATION; CONVEX VARIATIONAL REGULARIZATION; ILL-POSED PROBLEMS; CONVERGENCE-RATES; BANACH-SPACES; IMAGE-RESTORATION; CONSTRAINTS; CHOICE;
D O I
10.1137/100790756
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we develop a novel rule for choosing regularization parameters in non-smooth Tikhonov functionals. It is solely based on the value function and applicable to a broad range of nonsmooth models, and it extends one known criterion. A posteriori error estimates of the approximations are derived. An efficient numerical algorithm for computing the minimizer is developed, and its convergence properties are discussed. Numerical results for several common nonsmooth models are presented, including deblurring natural images. The numerical results indicate the rule can yield results comparable with those achieved with the discrepancy principle and the optimal choice, and the algorithm merits a fast and steady convergence.
引用
收藏
页码:1415 / 1438
页数:24
相关论文
共 50 条
  • [31] Automatic parameter selection for Tikhonov regularization in ECT Inverse problem
    Pasadas, Dario J.
    Ribeiro, Artur L.
    Ramos, Helena G.
    Rocha, Tiago J.
    SENSORS AND ACTUATORS A-PHYSICAL, 2016, 246 : 73 - 80
  • [33] Synchronous generator parameter identification based on Tikhonov regularization method
    Huang C.
    Yuan H.
    Ma Z.
    Ling M.
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2016, 36 (05): : 107 - 111
  • [34] Automatic balancing parameter selection for Tikhonov-TV regularization
    Ali Gholami
    Silvia Gazzola
    BIT Numerical Mathematics, 2022, 62 : 1873 - 1898
  • [35] A new choice rule for regularization parameters in Tikhonov regularization
    Ito, Kazufumi
    Jin, Bangti
    Zou, Jun
    APPLICABLE ANALYSIS, 2011, 90 (10) : 1521 - 1544
  • [36] A KIND OF A POSTERIORI PARAMETER CHOICES FOR THE ITERATED TIKHONOV REGULARIZATION METHOD
    HE, GQ
    CHINESE SCIENCE BULLETIN, 1993, 38 (05): : 356 - 360
  • [37] Convergence rate for a convection parameter identified using Tikhonov regularization
    Dimitriu, G
    NUMERICAL ANALYSIS AND ITS APPLICATIONS, 2001, 1988 : 246 - 252
  • [38] Convergence rates of Tikhonov regularization for parameter identification in a Maxwell system
    Feng, Hui
    Jiang, Daijun
    APPLICABLE ANALYSIS, 2015, 94 (02) : 361 - 375
  • [39] A New Method for Determining the Tikhonov Regularization Parameter of Load Identification
    Gao, Wei
    Yu, Kaiping
    NINTH INTERNATIONAL SYMPOSIUM ON PRECISION ENGINEERING MEASUREMENTS AND INSTRUMENTATION, 2015, 9446
  • [40] Influence of the Tikhonov Regularization Parameter on the Accuracy of the Inverse Problem in Electrocardiography
    Wang, Tiantian
    Karel, Joel
    Bonizzi, Pietro
    Peeters, Ralf L. M.
    SENSORS, 2023, 23 (04)