Principal component regression analysis with SPSS

被引:231
|
作者
Liu, RX [1 ]
Kuang, J
Gong, Q
Hou, XL
机构
[1] Jinan Univ, Coll Med, Guangzhou 510362, Peoples R China
[2] Guangdong Prov Peoples Hosp, Guangzhou 510080, Peoples R China
[3] Jinan Univ Lib, Guangzhou 510632, Peoples R China
关键词
multicollinearity diagnosis; principal component regression analysis; SPSS;
D O I
10.1016/S0169-2607(02)00058-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The paper introduces all indices of multicollinearity diagnoses, the basic principle of principal component regression and determination of 'best' equation method. The paper uses an example to describe how to do principal component regression analysis with spss 10.0: including all calculating processes of the principal component regression and all operations of linear regression, factor analysis, descriptives, compute variable and bivariate correclations procedures in spss 10.0. The principal component regression analysis can be used to overcome disturbance of the multicollinearity. The simplified, speeded up and accurate statistical effect is reached through the principal component regression analysis with spss. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
引用
收藏
页码:141 / 147
页数:7
相关论文
共 50 条
  • [31] Multivariate Analysis of Micro-Raman Spectra of Thermoplastic Polyurethane Blends Using Principal Component Analysis and Principal Component Regression
    Weakley, Andrew Todd
    Warwick, P. C. Temple
    Bitterwolf, Thomas E.
    Aston, D. Eric
    [J]. APPLIED SPECTROSCOPY, 2012, 66 (11) : 1269 - 1278
  • [32] Bootstrapping Principal Component Regression Models
    Wehrens, R.
    Van Der Linden, W. E.
    [J]. Journal of Chemometrics, 11 (02): : 157 - 171
  • [33] Hybrid principal component regression estimation in linear regression
    Rong, Jian-Ying
    Liu, Xu-Qing
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (06): : 3758 - 3776
  • [34] PRINCIPAL COMPONENT REGRESSION UNDER EXCHANGEABILITY
    SOOFI, ES
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1988, 17 (06) : 1717 - 1733
  • [35] Bootstrapping principal component regression models
    Wehrens, R
    VanderLinden, WE
    [J]. JOURNAL OF CHEMOMETRICS, 1997, 11 (02) : 157 - 171
  • [36] Uncertainty quantification for principal component regression
    Wu, Suofei
    Hannig, Jan
    Lee, Thomas C. M.
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (01): : 2157 - 2178
  • [37] A note on kernel principal component regression
    Antoni Wibowo
    Yoshitsugu Yamamoto
    [J]. Computational Mathematics and Modeling, 2012, 23 (3) : 350 - 367
  • [38] Elastic functional principal component regression
    Tucker, J. Derek
    Lewis, John R.
    Srivastava, Anuj
    [J]. STATISTICAL ANALYSIS AND DATA MINING, 2019, 12 (02) : 101 - 115
  • [39] Noise Variance Estimation Method Based on Regression Analysis and Principal Component Analysis
    Wu Jiang
    You Fei
    Jiang Ping
    [J]. JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2018, 40 (05) : 1195 - 1201
  • [40] Improved principal component analysis and linear regression classification for face recognition
    Zhu, Yani
    Zhu, Chaoyang
    Li, Xiaoxin
    [J]. SIGNAL PROCESSING, 2018, 145 : 175 - 182