Bootstrapping principal component regression models

被引:0
|
作者
Wehrens, R [1 ]
VanderLinden, WE [1 ]
机构
[1] UNIV TWENTE,DEPT CHEM ANAL,NL-7500 AE ENSCHEDE,NETHERLANDS
关键词
variable selection; prediction error estimation; bootstrap; latent variable regression;
D O I
10.1002/(SICI)1099-128X(199703)11:2<157::AID-CEM471>3.0.CO;2-J
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Bootstrap methods can be used as an alternative for cross-validation in regression procedures such as principal component regression (PCR). Several bootstrap methods for the estimation of prediction errors and confidence intervals are presented. It is shown that bootstrap error estimates are consistent with cross-validation estimates but exhibit less variability. This makes it easier to select the correct number of latent variables in the model. Using bootstrap confidence intervals for the regression vectors, it is possible to select a subset of the original variables to include in the regression, yielding a more parsimonious model with smaller prediction errors. The methods are illustrated using PCR, but can be applied to all regression models yielding a vector or matrix of regression coefficients. (C) 1997 by John Wiley & Sons, Ltd.
引用
收藏
页码:157 / 171
页数:15
相关论文
共 50 条
  • [1] Local prediction models by principal component regression
    Xie, YL
    Kalivas, JH
    [J]. ANALYTICA CHIMICA ACTA, 1997, 348 (1-3) : 29 - 38
  • [2] A principal component approach to dynamic regression models
    delMoral, MJ
    Valderrama, MJ
    [J]. INTERNATIONAL JOURNAL OF FORECASTING, 1997, 13 (02) : 237 - 244
  • [3] Sparse principal component regression for generalized linear models
    Kawano, Shuichi
    Fujisawa, Hironori
    Takada, Toyoyuki
    Shiroishi, Toshihiko
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 124 : 180 - 196
  • [4] Principal Component Regression by Principal Component Selection
    Lee, Hosung
    Park, Yun Mi
    Lee, Seokho
    [J]. COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2015, 22 (02) : 173 - 180
  • [5] Principal component regression, ridge regression and ridge principal component regression in spectroscopy calibration
    Vigneau, E
    Devaux, MF
    Qannari, EM
    Robert, P
    [J]. JOURNAL OF CHEMOMETRICS, 1997, 11 (03) : 239 - 249
  • [6] BOOTSTRAPPING REGRESSION-MODELS
    FREEDMAN, DA
    [J]. ANNALS OF STATISTICS, 1981, 9 (06): : 1218 - 1228
  • [7] Bootstrapping error component models
    Andersson, MK
    Karlsson, S
    [J]. COMPUTATIONAL STATISTICS, 2001, 16 (02) : 221 - 231
  • [8] Bootstrapping Error Component Models
    Michael K. Andersson
    Sune Karlsson
    [J]. Computational Statistics, 2001, 16 : 221 - 231
  • [9] Bayesian inference of the cumulative logistic principal component regression models
    Kyung, Minjung
    [J]. COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2022, 29 (02) : 203 - 223
  • [10] Forecast comparison of principal component regression and principal covariate regression
    Heij, Christiaan
    Groenen, Patrick J. F.
    van Dijk, Dick
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (07) : 3612 - 3625