Bootstrapping principal component regression models

被引:0
|
作者
Wehrens, R [1 ]
VanderLinden, WE [1 ]
机构
[1] UNIV TWENTE,DEPT CHEM ANAL,NL-7500 AE ENSCHEDE,NETHERLANDS
关键词
variable selection; prediction error estimation; bootstrap; latent variable regression;
D O I
10.1002/(SICI)1099-128X(199703)11:2<157::AID-CEM471>3.0.CO;2-J
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Bootstrap methods can be used as an alternative for cross-validation in regression procedures such as principal component regression (PCR). Several bootstrap methods for the estimation of prediction errors and confidence intervals are presented. It is shown that bootstrap error estimates are consistent with cross-validation estimates but exhibit less variability. This makes it easier to select the correct number of latent variables in the model. Using bootstrap confidence intervals for the regression vectors, it is possible to select a subset of the original variables to include in the regression, yielding a more parsimonious model with smaller prediction errors. The methods are illustrated using PCR, but can be applied to all regression models yielding a vector or matrix of regression coefficients. (C) 1997 by John Wiley & Sons, Ltd.
引用
收藏
页码:157 / 171
页数:15
相关论文
共 50 条
  • [21] WHICH PRINCIPAL COMPONENTS TO UTILIZE FOR PRINCIPAL COMPONENT REGRESSION
    SUTTER, JM
    KALIVAS, JH
    LANG, PM
    [J]. JOURNAL OF CHEMOMETRICS, 1992, 6 (04) : 217 - 225
  • [22] Bootstrapping regression models with locally stationary disturbances
    Ferreira, Guillermo
    Mateu, Jorge
    Vilar, Jose A.
    Munoz, Joel
    [J]. TEST, 2021, 30 (02) : 341 - 363
  • [23] Bootstrapping regression models with locally stationary disturbances
    Guillermo Ferreira
    Jorge Mateu
    Jose A. Vilar
    Joel Muñoz
    [J]. TEST, 2021, 30 : 341 - 363
  • [24] EDGEWORTH EXPANSIONS FOR BOOTSTRAPPING REGRESSION-MODELS
    NAVIDI, W
    [J]. ANNALS OF STATISTICS, 1989, 17 (04): : 1472 - 1478
  • [25] Analyses of Two Different Regression Models and Bootstrapping
    Gokalp, Fulya
    [J]. OPERATIONS RESEARCH PROCEEDINGS 2011, 2012, : 237 - 242
  • [26] Bootstrapping factor-augmented regression models
    Goncalves, Silvia
    Perron, Benoit
    [J]. JOURNAL OF ECONOMETRICS, 2014, 182 (01) : 156 - 173
  • [27] Hybrid principal component regression estimation in linear regression
    Rong, Jian-Ying
    Liu, Xu-Qing
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (06): : 3758 - 3776
  • [28] PRINCIPAL COMPONENT REGRESSION UNDER EXCHANGEABILITY
    SOOFI, ES
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1988, 17 (06) : 1717 - 1733
  • [29] A note on kernel principal component regression
    Antoni Wibowo
    Yoshitsugu Yamamoto
    [J]. Computational Mathematics and Modeling, 2012, 23 (3) : 350 - 367
  • [30] Principal component regression analysis with SPSS
    Liu, RX
    Kuang, J
    Gong, Q
    Hou, XL
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2003, 71 (02) : 141 - 147