Principal component regression analysis with SPSS

被引:231
|
作者
Liu, RX [1 ]
Kuang, J
Gong, Q
Hou, XL
机构
[1] Jinan Univ, Coll Med, Guangzhou 510362, Peoples R China
[2] Guangdong Prov Peoples Hosp, Guangzhou 510080, Peoples R China
[3] Jinan Univ Lib, Guangzhou 510632, Peoples R China
关键词
multicollinearity diagnosis; principal component regression analysis; SPSS;
D O I
10.1016/S0169-2607(02)00058-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The paper introduces all indices of multicollinearity diagnoses, the basic principle of principal component regression and determination of 'best' equation method. The paper uses an example to describe how to do principal component regression analysis with spss 10.0: including all calculating processes of the principal component regression and all operations of linear regression, factor analysis, descriptives, compute variable and bivariate correclations procedures in spss 10.0. The principal component regression analysis can be used to overcome disturbance of the multicollinearity. The simplified, speeded up and accurate statistical effect is reached through the principal component regression analysis with spss. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
引用
收藏
页码:141 / 147
页数:7
相关论文
共 50 条
  • [41] Fast Ridge Regression with Randomized Principal Component Analysis and Gradient Descent
    Lu, Yichao
    Foster, Dean P.
    [J]. UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2014, : 525 - 532
  • [42] Robust Functional Principal Component Analysis Based on a New Regression Framework
    Haolun Shi
    Jiguo Cao
    [J]. Journal of Agricultural, Biological and Environmental Statistics, 2022, 27 : 523 - 543
  • [43] The Use of Principal Component Analysis and Logistic Regression for Cutter State Identification
    Kozlowski, Edward
    Mazurkiewicz, Dariusz
    Sep, Jaroslaw
    Zabinski, Tomasz
    [J]. INNOVATIONS IN INDUSTRIAL ENGINEERING, 2022, : 396 - 405
  • [44] Supervised principal component analysis: Visualization, classification and regression on subspaces and submanifolds
    Barshan, Elnaz
    Ghodsi, Ali
    Azimifar, Zohreh
    Jahromi, Mansoor Zolghadri
    [J]. PATTERN RECOGNITION, 2011, 44 (07) : 1357 - 1371
  • [45] Principal Component Regression Empirical Analysis on Influencing Factors of Gold Price
    Pan Guihao
    Hu Nailian
    Li Jian
    Lu Hongjian
    [J]. COMPREHENSIVE EVALUATION OF ECONOMY AND SOCIETY WITH STATISTICAL SCIENCE, 2009, : 30 - 35
  • [46] Multivariate concentration determination using principal component regression with residual analysis
    Keithley, Richard B.
    Heien, Michael L.
    Wightman, R. Mark
    [J]. TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2009, 28 (09) : 1127 - 1136
  • [47] Generalized multilevel function-on-scalar regression and principal component analysis
    Goldsmith, Jeff
    Zipunnikov, Vadim
    Schrack, Jennifer
    [J]. BIOMETRICS, 2015, 71 (02) : 344 - 353
  • [48] Robust Functional Principal Component Analysis Based on a New Regression Framework
    Shi, Haolun
    Cao, Jiguo
    [J]. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2022, 27 (03) : 523 - 543
  • [49] Principal Component Projection Without Principal Component Analysis
    Frostig, Roy
    Musco, Cameron
    Musco, Christopher
    Sidford, Aaron
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [50] Driving force analysis of irrigation water consumption using principal component regression analysis
    Chen, Mengting
    Luo, Yufeng
    Shen, Yingying
    Han, Zhenzhong
    Cui, Yuanlai
    [J]. AGRICULTURAL WATER MANAGEMENT, 2020, 234