Micromachining of Polyurethane Membranes for Tissue Engineering Applications

被引:7
|
作者
Arefin, Ayesha [1 ,2 ]
Mcculloch, Quinn [1 ,3 ]
Martinez, Ricardo [3 ]
Martin, Simona A. [2 ]
Shing, Rohan [4 ]
Ishak, Omar M. [2 ]
Higgins, Erin M. [5 ,7 ]
Haffey, Kiersten E. [5 ]
Huang, Jen-Huang [2 ,8 ]
Iyer, Srinivas [2 ]
Nath, Pulak [5 ]
Iyer, Rashi [6 ]
Harris, Jennifer F. [2 ]
机构
[1] Univ New Mexico, Nanosci & Microsyst Dept, MSC01 1120,1 Univ New Mexico, Albuquerque, NM 87131 USA
[2] Los Alamos Natl Lab, Biosci Div, POB 1663 MS M888, Los Alamos, NM 87545 USA
[3] Los Alamos Natl Lab, MPA CINT Ctr Integrated Nanotechnol, POB 1663 MS K771, Los Alamos, NM 87545 USA
[4] Los Alamos Natl Lab, C PCS Phys Chem & Appl Spect, POB 1663 MS J567, Los Alamos, NM 87545 USA
[5] Los Alamos Natl Lab, Appl Modern Phys Div, POB 1663 MS D454, Los Alamos, NM 87545 USA
[6] Los Alamos Natl Lab, Syst Anal & Surveillance Div, POB 1663 MS C921, Los Alamos, NM 87545 USA
[7] Univ Texas Austin, 1 Univ Stn, Austin, TX 78712 USA
[8] Natl Tsing Hua Univ, Engn Bldg 1,101,Sect 2,Kuang Fu Rd, Hsinchu 3001, Taiwan
来源
ACS BIOMATERIALS SCIENCE & ENGINEERING | 2018年 / 4卷 / 10期
关键词
femtosecond laser machining; thin polyurethane membrane; micropore generation; air-liquid interface; FEMTOSECOND LASER-ABLATION; AIR-LIQUID INTERFACE; IN-VITRO MODEL; SOFT LITHOGRAPHY; CELL BIOLOGY; SCAFFOLDS; BARRIER; NANOPARTICLES; SUBSTRATE; PROMOTES;
D O I
10.1021/acsbiomaterials.8b00578
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Engineered tissue barrier models offer in vitro alternatives in toxicology and disease research. To mimic barrier tissue microenvironment, a porous membrane that can approach the stiffness of physiological basement membranes is required. While several biocompatible membranes with micrometer range thickness (10 pm) and a stiffness less than polystyrene (3 GPa) or polyethylene (PET, 2 GPa), have been developed, there has been little effort to optimize the process to enable rapid and reproducible pore production in these membranes. Here, we investigate the use of laser irradiation with femtosecond (fs) pulses because the combination of high-precision and cold ablation causes minimal damage to polymeric membranes. This process enables automated, high-throughput and reproducible fabrication of thin, microporous membranes that can be utilized to culture cells at air liquid interface (ALI), a unique culture technique that simulates the tissue-barrier microenvironment. We show the optimization of laser parameters on a thin polyurethane membrane and patterned pores with an average diameter of 5 pm. Tissue was cultured at ALI for 28 days to demonstrate the membrane's utility in constructing a tissue barrier model. These results confirm the utilization of fs laser machining as a viable method for creating a porous barrier substrate in tissue engineering platforms.
引用
收藏
页码:3522 / 3533
页数:23
相关论文
共 50 条
  • [41] Assessment of tissue ingrowth rates in polyurethane scaffolds for tissue engineering
    Ramrattan, NN
    Heijkants, RGJC
    van Tienen, TG
    Schouten, AJ
    Veth, RPH
    Buma, P
    TISSUE ENGINEERING, 2005, 11 (7-8): : 1212 - 1223
  • [42] Synthesis and characterization of biodegradable lysine-based waterborne polyurethane for soft tissue engineering applications
    Hao, Hongye
    Shao, Jingyu
    Deng, Ya
    He, Shan
    Luo, Feng
    Wu, Yingke
    Li, Jiehua
    Tan, Hong
    Li, Jianshu
    Fu, Qiang
    BIOMATERIALS SCIENCE, 2016, 4 (11) : 1682 - 1690
  • [43] 3D-Printed Polyurethane Scaffolds for Bone Tissue Engineering: Techniques and Emerging Applications
    Shanno, Kumari
    Mangala, Preeti
    Shanmugarajan, Thukani Sathanantham
    Bhyan, Bhupinder
    Shinde, Manoj Gangadhar
    Rane, Bhuvaneshwari Yogesh
    Ali, Syed Salman
    Kumar, Mohit
    Kumar, Pawan
    REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE, 2025,
  • [44] Synthesis and Characterization of Degradable Polar Hydrophobic Ionic Polyurethane Scaffolds for Vascular Tissue Engineering Applications
    Sharifpoor, Soroor
    Labow, Rosalind S.
    Santerre, J. Paul
    BIOMACROMOLECULES, 2009, 10 (10) : 2729 - 2739
  • [45] The Effect of Negative Poisson's Ratio Polyurethane Scaffolds for Articular Cartilage Tissue Engineering Applications
    Park, Yeong Jun
    Kim, Jeong Koo
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2013, 2013
  • [46] Preparation and characterization of coaxial electrospun thermoplastic polyurethane/collagen compound nanofibers for tissue engineering applications
    Chen, Rui
    Huang, Chen
    Ke, Qinfei
    He, Chuanglong
    Wang, Hongsheng
    Mo, Xiumei
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2010, 79 (02) : 315 - 325
  • [47] Blood compatibility assessments of electrospun polyurethane nanocomposites blended with megni oil for tissue engineering applications
    Jaganathan, Saravana Kumar
    Mani, Mohan P.
    Supriyanto, Eko
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2019, 91 (02):
  • [48] Membranes for bioartificial organs and tissue engineering
    Stamatialis, D. F.
    Papenburg, B. J.
    Bettahalli, M. S.
    Girones, M.
    de Boer, J.
    van Blitterswijk, C.
    Wessling, M.
    TISSUE ENGINEERING PART A, 2008, 14 (05) : 755 - 755
  • [49] Membranes as barrier materials in tissue engineering
    Rein, D
    ADVANCES IN FILTRATION AND SEPARATION TECHNOLOGY, VOLS 13A AND 13B, 1999: ADVANCING FILTRATION AND SEPARATION SOLUTIONS FOR THE MILLENNIUM, 1999, : 581 - 584
  • [50] Preparation and characterization of novel β-chitin-hydroxyapatite composite membranes for tissue engineering applications
    Madhumathi, K.
    Binulal, N. S.
    Nagahama, H.
    Tamura, H.
    Shalumon, K. T.
    Selvamurugan, N.
    Nair, S. V.
    Jayakumar, R.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2009, 44 (01) : 1 - 5