Micromachining of Polyurethane Membranes for Tissue Engineering Applications

被引:7
|
作者
Arefin, Ayesha [1 ,2 ]
Mcculloch, Quinn [1 ,3 ]
Martinez, Ricardo [3 ]
Martin, Simona A. [2 ]
Shing, Rohan [4 ]
Ishak, Omar M. [2 ]
Higgins, Erin M. [5 ,7 ]
Haffey, Kiersten E. [5 ]
Huang, Jen-Huang [2 ,8 ]
Iyer, Srinivas [2 ]
Nath, Pulak [5 ]
Iyer, Rashi [6 ]
Harris, Jennifer F. [2 ]
机构
[1] Univ New Mexico, Nanosci & Microsyst Dept, MSC01 1120,1 Univ New Mexico, Albuquerque, NM 87131 USA
[2] Los Alamos Natl Lab, Biosci Div, POB 1663 MS M888, Los Alamos, NM 87545 USA
[3] Los Alamos Natl Lab, MPA CINT Ctr Integrated Nanotechnol, POB 1663 MS K771, Los Alamos, NM 87545 USA
[4] Los Alamos Natl Lab, C PCS Phys Chem & Appl Spect, POB 1663 MS J567, Los Alamos, NM 87545 USA
[5] Los Alamos Natl Lab, Appl Modern Phys Div, POB 1663 MS D454, Los Alamos, NM 87545 USA
[6] Los Alamos Natl Lab, Syst Anal & Surveillance Div, POB 1663 MS C921, Los Alamos, NM 87545 USA
[7] Univ Texas Austin, 1 Univ Stn, Austin, TX 78712 USA
[8] Natl Tsing Hua Univ, Engn Bldg 1,101,Sect 2,Kuang Fu Rd, Hsinchu 3001, Taiwan
来源
关键词
femtosecond laser machining; thin polyurethane membrane; micropore generation; air-liquid interface; FEMTOSECOND LASER-ABLATION; AIR-LIQUID INTERFACE; IN-VITRO MODEL; SOFT LITHOGRAPHY; CELL BIOLOGY; SCAFFOLDS; BARRIER; NANOPARTICLES; SUBSTRATE; PROMOTES;
D O I
10.1021/acsbiomaterials.8b00578
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Engineered tissue barrier models offer in vitro alternatives in toxicology and disease research. To mimic barrier tissue microenvironment, a porous membrane that can approach the stiffness of physiological basement membranes is required. While several biocompatible membranes with micrometer range thickness (10 pm) and a stiffness less than polystyrene (3 GPa) or polyethylene (PET, 2 GPa), have been developed, there has been little effort to optimize the process to enable rapid and reproducible pore production in these membranes. Here, we investigate the use of laser irradiation with femtosecond (fs) pulses because the combination of high-precision and cold ablation causes minimal damage to polymeric membranes. This process enables automated, high-throughput and reproducible fabrication of thin, microporous membranes that can be utilized to culture cells at air liquid interface (ALI), a unique culture technique that simulates the tissue-barrier microenvironment. We show the optimization of laser parameters on a thin polyurethane membrane and patterned pores with an average diameter of 5 pm. Tissue was cultured at ALI for 28 days to demonstrate the membrane's utility in constructing a tissue barrier model. These results confirm the utilization of fs laser machining as a viable method for creating a porous barrier substrate in tissue engineering platforms.
引用
收藏
页码:3522 / 3533
页数:23
相关论文
共 50 条
  • [31] Polysaccharide-based nanofibrous membranes as suitable scaffolds for tissue engineering applications
    A. A. Cienfuegos-Sarmiento
    M. A. Martínez-Rodríguez
    M. A. de la Garza-Ramos
    A. F. García-Loera
    M. A. Garza-Navarro
    Cellulose, 2023, 30 : 9593 - 9606
  • [32] Polysaccharide-based nanofibrous membranes as suitable scaffolds for tissue engineering applications
    Cienfuegos-Sarmiento, A. A.
    Martinez-Rodriguez, M. A.
    de la Garza-ramos, M. A.
    Garcia-Loera, A. F.
    Garza-Navarro, M. A.
    CELLULOSE, 2023, 30 (15) : 9593 - 9606
  • [33] BACTERIAL CELLULOSE MEMBRANES WITH PLASMA-MODIFIED SURFACES FOR TISSUE ENGINEERING APPLICATIONS
    Dercore Benevenuto, Luiz
    Cruz, Sandra
    Alves, Eduardo
    Achcar, Jorge
    Barud, Hernane
    Montrezor, Luis
    FASEB JOURNAL, 2020, 34
  • [34] Polyurethane electrospun membranes with hydroxyapatite-vancomycin for potential application in bone tissue engineering and drug delivery
    Vasquez-Lopez, Claudia
    Castillo-Ortega, Maria Monica
    Chan-Chan, Lerma Hanaiy
    Lagarda-Diaz, Irlanda
    Giraldo-Betancur, Astrid Lorena
    Rodriguez-Felix, Dora Evelia
    Encinas-Encinas, Jose Carmelo
    Martinez-Barbosa, Maria Elisa
    Cadenas-Pliego, Gregorio
    Cauich-Rodriguez, Juan Valerio
    Herrera-Franco, Pedro Jesus
    JOURNAL OF APPLIED POLYMER SCIENCE, 2022, 139 (14)
  • [35] Versatile polyurethane scaffold material for tissue engineering
    Wiese, D. H.
    Maier, G.
    Deisinger, U.
    Hamisch, S.
    Blunk, T.
    Tausendpfund, D.
    Baumer, J.
    TISSUE ENGINEERING PART A, 2008, 14 (05) : 794 - 795
  • [36] ASCORBIC ACID IN POLYURETHANE SYSTEMS FOR TISSUE ENGINEERING
    Kucinska-Lipka, Justyna
    Janik, Helena
    Gubanska, Iga
    CHEMISTRY & CHEMICAL TECHNOLOGY, 2016, 10 (04): : 607 - 612
  • [37] Characterization of biodegradable polyurethane microfibers for tissue engineering
    Rockwood, Danielle N.
    Woodhouse, Kimberly A.
    Fromstein, Joanna D.
    Chase, D. Bruce
    Rabolt, John F.
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2007, 18 (06) : 743 - 758
  • [38] Recent advances in tissue engineering scaffolds based on polyurethane and modified polyurethane
    Naureen, Bushra
    Haseeb, A. S. M. A.
    Basirun, W. J.
    Muhamad, Farina
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2021, 118 (118):
  • [39] Hydroxyapatite/Polyurethane Scaffolds for Bone Tissue Engineering
    Zhang, Tianyu
    Li, Jingxuan
    Wang, Yahui
    Han, Weimo
    Wei, Yan
    Hu, Yinchun
    Liang, Ziwei
    Lian, Xiaojie
    Huang, Di
    TISSUE ENGINEERING PART B-REVIEWS, 2024, 30 (01) : 60 - 73
  • [40] Biocompatible polyurethane composites with calcite for tissue engineering
    Dulinska-Molak, Ida
    Ryszkowska, Joanna
    Kurzydlowski, Krzysztof J.
    PRZEMYSL CHEMICZNY, 2010, 89 (12): : 1614 - 1620