Micromachining of Polyurethane Membranes for Tissue Engineering Applications

被引:7
|
作者
Arefin, Ayesha [1 ,2 ]
Mcculloch, Quinn [1 ,3 ]
Martinez, Ricardo [3 ]
Martin, Simona A. [2 ]
Shing, Rohan [4 ]
Ishak, Omar M. [2 ]
Higgins, Erin M. [5 ,7 ]
Haffey, Kiersten E. [5 ]
Huang, Jen-Huang [2 ,8 ]
Iyer, Srinivas [2 ]
Nath, Pulak [5 ]
Iyer, Rashi [6 ]
Harris, Jennifer F. [2 ]
机构
[1] Univ New Mexico, Nanosci & Microsyst Dept, MSC01 1120,1 Univ New Mexico, Albuquerque, NM 87131 USA
[2] Los Alamos Natl Lab, Biosci Div, POB 1663 MS M888, Los Alamos, NM 87545 USA
[3] Los Alamos Natl Lab, MPA CINT Ctr Integrated Nanotechnol, POB 1663 MS K771, Los Alamos, NM 87545 USA
[4] Los Alamos Natl Lab, C PCS Phys Chem & Appl Spect, POB 1663 MS J567, Los Alamos, NM 87545 USA
[5] Los Alamos Natl Lab, Appl Modern Phys Div, POB 1663 MS D454, Los Alamos, NM 87545 USA
[6] Los Alamos Natl Lab, Syst Anal & Surveillance Div, POB 1663 MS C921, Los Alamos, NM 87545 USA
[7] Univ Texas Austin, 1 Univ Stn, Austin, TX 78712 USA
[8] Natl Tsing Hua Univ, Engn Bldg 1,101,Sect 2,Kuang Fu Rd, Hsinchu 3001, Taiwan
来源
ACS BIOMATERIALS SCIENCE & ENGINEERING | 2018年 / 4卷 / 10期
关键词
femtosecond laser machining; thin polyurethane membrane; micropore generation; air-liquid interface; FEMTOSECOND LASER-ABLATION; AIR-LIQUID INTERFACE; IN-VITRO MODEL; SOFT LITHOGRAPHY; CELL BIOLOGY; SCAFFOLDS; BARRIER; NANOPARTICLES; SUBSTRATE; PROMOTES;
D O I
10.1021/acsbiomaterials.8b00578
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Engineered tissue barrier models offer in vitro alternatives in toxicology and disease research. To mimic barrier tissue microenvironment, a porous membrane that can approach the stiffness of physiological basement membranes is required. While several biocompatible membranes with micrometer range thickness (10 pm) and a stiffness less than polystyrene (3 GPa) or polyethylene (PET, 2 GPa), have been developed, there has been little effort to optimize the process to enable rapid and reproducible pore production in these membranes. Here, we investigate the use of laser irradiation with femtosecond (fs) pulses because the combination of high-precision and cold ablation causes minimal damage to polymeric membranes. This process enables automated, high-throughput and reproducible fabrication of thin, microporous membranes that can be utilized to culture cells at air liquid interface (ALI), a unique culture technique that simulates the tissue-barrier microenvironment. We show the optimization of laser parameters on a thin polyurethane membrane and patterned pores with an average diameter of 5 pm. Tissue was cultured at ALI for 28 days to demonstrate the membrane's utility in constructing a tissue barrier model. These results confirm the utilization of fs laser machining as a viable method for creating a porous barrier substrate in tissue engineering platforms.
引用
收藏
页码:3522 / 3533
页数:23
相关论文
共 50 条
  • [21] Preparation of biodegradable chitin/gelatin membranes with GlcNAc for tissue engineering applications
    Nagahama, H.
    Kashiki, T.
    Nwe, N.
    Jayakumar, R.
    Furuike, T.
    Tamura, H.
    CARBOHYDRATE POLYMERS, 2008, 73 (03) : 456 - 463
  • [22] Medical applications of membranes:: Drug delivery, artificial organs and tissue engineering
    Stamatialis, Dimitrios F.
    Papenburg, Bernke J.
    Girones, Miriam
    Saiful, Saiful
    Bettahalli, Srivatsa N. M.
    Schmitmeier, Stephanie
    Wessling, Matthias
    JOURNAL OF MEMBRANE SCIENCE, 2008, 308 (1-2) : 1 - 34
  • [23] A method for fabricating collagen membranes with microporous structure: Applications in tissue engineering
    Throm, AM
    Pins, GD
    PROCEEDINGS OF THE IEEE 29TH ANNUAL NORTHEAST BIOENGINEERING CONFERENCE, 2003, : 203 - 204
  • [24] Bioactive Polyurethane-Poly(ethylene Glycol) Diacrylate Hydrogels for Applications in Tissue Engineering
    Yuan, Yixuan
    Tyson, Caleb
    Szyniec, Annika
    Agro, Samuel
    Tavakol, Tara N.
    Harmon, Alexander
    Lampkins, Dessarae
    Pearson, Lauran
    Dumas, Jerald E.
    Taite, Lakeshia J.
    GELS, 2024, 10 (02)
  • [25] Evaluation of Sterilization/Disinfection Methods of Fibrous Polyurethane Scaffolds Designed for Tissue Engineering Applications
    Lopianiak, Iwona
    Butruk-Raszeja, Beata A.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (21) : 1 - 18
  • [26] Biodegradation and in vivo biocompatibility of a degradable, polar/hydrophobic/ionic polyurethane for tissue engineering applications
    McBane, Joanne E.
    Sharifpoor, Soroor
    Cai, Kuihua
    Labow, Rosalind S.
    Santerre, J. Paul
    BIOMATERIALS, 2011, 32 (26) : 6034 - 6044
  • [27] Electrospinning Thermoplastic Polyurethane-Contained Collagen Nanofibers for Tissue-Engineering Applications
    Chen, Rui
    Qiu, Lijun
    Ke, Qinfei
    He, Chuanglong
    Mo, Xiumei
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2009, 20 (11) : 1513 - 1536
  • [28] Development of biodegradable polyurethane and bioactive glass nanoparticles scaffolds for bone tissue engineering applications
    Rocha de Oliveira, Agda Aline
    de Carvalho, Sandhra Maria
    Leite, Maria de Fatima
    Orefice, Rodrigo Lambert
    Pereira, Marivalda de Magalhaes
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2012, 100B (05) : 1387 - 1396
  • [29] Vascular tissue engineering by computer-aided laser micromachining
    Doraiswamy, Anand
    Narayan, Roger J.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 368 (1917): : 1891 - 1912
  • [30] Oriented nanofibrous membranes for tissue engineering applications: Electrospinning with secondary field control
    Walser, Jochen
    Ferguson, Stephen J.
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2016, 58 : 188 - 198