Lagrangian fractional mechanics - a noncommutative approach

被引:37
|
作者
Klimek, M [1 ]
机构
[1] Czestochowa Tech Univ, Inst Math & Comp Sci, PL-42200 Czestochowa, Poland
关键词
fractional derivative; fractional mechanics; Euler-Lagrange equations;
D O I
10.1007/s10582-006-0024-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The extension of coordinate-velocity space with noncommutative algebra structure is proposed. For action of fractional mechanics considered on such a space the respective Euler-Lagrange equations are derived via minimum action principle. It appears that equations of motion in the noncommutative framework do not mix left and right derivatives thus being simple to solve at least in the linear case. As an example, two models of oscillator with fractional derivatives are studied.
引用
收藏
页码:1447 / 1453
页数:7
相关论文
共 50 条
  • [11] A nilpotent algebra approach to Lagrangian mechanics and constrained motion
    Schutte, Aaron D.
    NONLINEAR DYNAMICS, 2017, 88 (02) : 1001 - 1012
  • [12] A nilpotent algebra approach to Lagrangian mechanics and constrained motion
    Aaron D. Schutte
    Nonlinear Dynamics, 2017, 88 : 1001 - 1012
  • [13] Nonlinear mechanics of MEMS plates with a total Lagrangian approach
    Mukherjee, S
    Bao, ZP
    Roman, M
    Aubry, N
    COMPUTERS & STRUCTURES, 2005, 83 (10-11) : 758 - 768
  • [14] Noncommutative quantum mechanics
    Girotti, HO
    AMERICAN JOURNAL OF PHYSICS, 2004, 72 (05) : 608 - 612
  • [15] Noncommutative classical mechanics
    Djemai, AEF
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2004, 43 (02) : 299 - 314
  • [16] Noncommutative Classical Mechanics
    A. E. F. Djemai
    International Journal of Theoretical Physics, 2004, 43 : 299 - 314
  • [17] Noncommutative quantum mechanics
    Gamboa, J
    Loewe, M
    Rojas, JC
    PHYSICAL REVIEW D, 2001, 64 (06)
  • [18] Noncommutative Lagrange Mechanics
    Kochan, Denis
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2008, 4
  • [19] Fractional and noncommutative spacetimes
    Arzano, Michele
    Calcagni, Gianluca
    Oriti, Daniele
    Scalisi, Marco
    PHYSICAL REVIEW D, 2011, 84 (12):
  • [20] Noncommutative fractional integrals
    Randrianantoanina, Narcisse
    Wu, Lian
    STUDIA MATHEMATICA, 2015, 229 (02) : 113 - 139