The extension of coordinate-velocity space with noncommutative algebra structure is proposed. For action of fractional mechanics considered on such a space the respective Euler-Lagrange equations are derived via minimum action principle. It appears that equations of motion in the noncommutative framework do not mix left and right derivatives thus being simple to solve at least in the linear case. As an example, two models of oscillator with fractional derivatives are studied.
机构:
Univ Fed Rio Grande do Sul, Inst Fis, BR-91501970 Porto Alegre, RS, BrazilUniv Fed Rio Grande do Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil
机构:
Albert Einstein Inst, Max Planck Inst Gravitat Phys, D-14476 Golm, GermanyUniv Utrecht, Inst Theoret Phys, NL-3584 TD Utrecht, Netherlands
Calcagni, Gianluca
论文数: 引用数:
h-index:
机构:
Oriti, Daniele
Scalisi, Marco
论文数: 0引用数: 0
h-index: 0
机构:
Albert Einstein Inst, Max Planck Inst Gravitat Phys, D-14476 Golm, Germany
Univ Catania, Dipartimento Fis & Astron, I-95124 Catania, Italy
INFN Sez Catania, I-95023 Catania, ItalyUniv Utrecht, Inst Theoret Phys, NL-3584 TD Utrecht, Netherlands