A nilpotent algebra approach to Lagrangian mechanics and constrained motion

被引:0
|
作者
Aaron D. Schutte
机构
[1] The Aerospace Corporation,
来源
Nonlinear Dynamics | 2017年 / 88卷
关键词
Constrained motion; Automatic differentiation; Nilpotent algebra; Lagrangian mechanics; Lyapunov exponents;
D O I
暂无
中图分类号
学科分类号
摘要
Lagrangian mechanics is extended to the so-called nilpotent Taylor algebra T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {T}}$$\end{document}. It is shown that this extension yields a practical computational technique for the evaluation and analysis of the equations of motion of general constrained dynamical systems. The underlying T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {T}}$$\end{document}-algebra utilized herein permits the analysis of constrained dynamical systems without the need for analytical or symbolic differentiations. Instead, the algebra produces the necessary exact derivatives inherently through binary operations, thus permitting the numerical analysis of constrained dynamical systems using only the defining scalar functions (the Lagrangian L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}$$\end{document} and the imposed constraints). The extension of the Lagrangian framework to the T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {T}}$$\end{document}-algebra is demonstrated analytically for a problem of constrained motion in a central field and numerically for the calculation of Lyapunov exponents of N-pendulum systems.
引用
收藏
页码:1001 / 1012
页数:11
相关论文
共 50 条
  • [1] A nilpotent algebra approach to Lagrangian mechanics and constrained motion
    Schutte, Aaron D.
    [J]. NONLINEAR DYNAMICS, 2017, 88 (02) : 1001 - 1012
  • [2] Equations of motion for general constrained systems in Lagrangian mechanics
    Udwadia, Firdaus E.
    Schutte, Aaron D.
    [J]. ACTA MECHANICA, 2010, 213 (1-2) : 111 - 129
  • [3] Equations of motion for general constrained systems in Lagrangian mechanics
    Firdaus E. Udwadia
    Aaron D. Schutte
    [J]. Acta Mechanica, 2010, 213 : 111 - 129
  • [4] CONSTANTS OF MOTION IN LAGRANGIAN MECHANICS
    CRAMPIN, M
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1977, 16 (10) : 741 - 754
  • [5] Symplectic groupoids and discrete constrained Lagrangian mechanics
    Carlos Marrero, Juan
    Martin de Diego, David
    Stern, Ari
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (01) : 367 - 397
  • [6] Lagrangian fractional mechanics - a noncommutative approach
    Klimek, M
    [J]. CZECHOSLOVAK JOURNAL OF PHYSICS, 2005, 55 (11) : 1447 - 1453
  • [7] Singular Lagrangian systems and variational constrained mechanics on Lie algebroids
    Iglesias, D.
    Marrero, J. C.
    de Diego, D. Martin
    Sosa, D.
    [J]. DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2008, 23 (03): : 351 - 397
  • [8] Nonconservative Lagrangian Mechanics: Purely Causal Equations of Motion
    Dreisigmeyer, David W.
    Young, Peter M.
    [J]. FOUNDATIONS OF PHYSICS, 2015, 45 (06) : 661 - 672
  • [9] Nonconservative Lagrangian Mechanics: Purely Causal Equations of Motion
    David W. Dreisigmeyer
    Peter M. Young
    [J]. Foundations of Physics, 2015, 45 : 661 - 672
  • [10] A nonlinear Lagrangian approach to constrained optimization problems
    Yang, XQ
    Huang, XX
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2001, 11 (04) : 1119 - 1144