Lagrangian fractional mechanics - a noncommutative approach

被引:37
|
作者
Klimek, M [1 ]
机构
[1] Czestochowa Tech Univ, Inst Math & Comp Sci, PL-42200 Czestochowa, Poland
关键词
fractional derivative; fractional mechanics; Euler-Lagrange equations;
D O I
10.1007/s10582-006-0024-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The extension of coordinate-velocity space with noncommutative algebra structure is proposed. For action of fractional mechanics considered on such a space the respective Euler-Lagrange equations are derived via minimum action principle. It appears that equations of motion in the noncommutative framework do not mix left and right derivatives thus being simple to solve at least in the linear case. As an example, two models of oscillator with fractional derivatives are studied.
引用
收藏
页码:1447 / 1453
页数:7
相关论文
共 50 条
  • [1] LAGRANGIAN AND HAMILTONIAN MECHANICS WITH FRACTIONAL DERIVATIVES
    Popescu, Emil
    ROMANIAN ASTRONOMICAL JOURNAL, 2013, 23 (02): : 85 - 97
  • [2] Path integral approach to noncommutative quantum mechanics
    Dragovich, B
    Rakic, Z
    LIE THEORY AND ITS APPLICATIONS IN PHYSICS V, PROCEEDINGS, 2004, : 364 - 373
  • [3] FRACTIONAL LAGRANGIAN FORMULATION OF GENERAL RELATIVITY AND EMERGENCE OF COMPLEX, SPINORIAL AND NONCOMMUTATIVE GRAVITY
    Rami, El-Nabulsi Ahmad
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2009, 6 (01) : 25 - 76
  • [4] Fractional Zero-Point Angular Momenta in Noncommutative Quantum Mechanics
    Liu, Si-Jia
    Zhang, Yu-Fei
    Long, Zheng-Wen
    Jing, Jian
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2016, 71 (09): : 823 - 829
  • [5] Further Research for Lagrangian Mechanics within Generalized Fractional Operators
    Song, Chuanjing
    FRACTAL AND FRACTIONAL, 2023, 7 (06)
  • [6] Some geometrical aspects of fractional nonconservative autonomous lagrangian mechanics
    El-Nabulsi, Rami Ahmad
    Int. J. Appl. Math. Stat., 1600, SO6 (50-64):
  • [7] Some Geometrical Aspects of Fractional Nonconservative Autonomous Lagrangian Mechanics
    El-Nabulsi, Rami Ahmad
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2006, 5 (S06): : 50 - 64
  • [8] Nonconservative Lagrangian mechanics: a generalized function approach
    Dreisigmeyer, DW
    Young, PM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (30): : 8297 - 8310
  • [9] Fractional angular momentum in noncommutative generalized Chern-Simons quantum mechanics
    Zhang, Xi-Lun
    Sun, Yong-Li
    Wang, Qing
    Long, Zheng-Wen
    Jing, Jian
    EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (07):
  • [10] Fractional angular momentum in noncommutative generalized Chern-Simons quantum mechanics
    Xi-Lun Zhang
    Yong-Li Sun
    Qing Wang
    Zheng-Wen Long
    Jian Jing
    The European Physical Journal Plus, 131