Some Geometrical Aspects of Fractional Nonconservative Autonomous Lagrangian Mechanics

被引:0
|
作者
El-Nabulsi, Rami Ahmad [1 ,2 ]
机构
[1] Jeju Natl Univ, Dept Nucl & Energy Engn, Plasma Applicat Lab, Ara Dong 1, Jeju 690756, South Korea
[2] Jeju Natl Univ, Fac Mech Energy & Prod Engn, Jeju 690756, South Korea
关键词
Fractional action-like variational approach; nonconservative Hamiltonian and Lagrangian dynamics; time decaying friction; fiber derivatives; geodesics;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Some important geometrical aspects of fractional nonconservative autonomous Lagrangian mechanics within the framework of fractional actionlike variational approach with one parameter "alfa" are treated and discussed in details.
引用
收藏
页码:50 / 64
页数:15
相关论文
共 50 条
  • [1] Some geometrical aspects of fractional nonconservative autonomous lagrangian mechanics
    El-Nabulsi, Rami Ahmad
    Int. J. Appl. Math. Stat., 1600, SO6 (50-64):
  • [2] Nonconservative Lagrangian and Hamiltonian mechanics
    Riewe, F
    PHYSICAL REVIEW E, 1996, 53 (02): : 1890 - 1899
  • [3] Nonconservative Lagrangian mechanics: a generalized function approach
    Dreisigmeyer, DW
    Young, PM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (30): : 8297 - 8310
  • [4] Nonconservative Lagrangian Mechanics: Purely Causal Equations of Motion
    Dreisigmeyer, David W.
    Young, Peter M.
    FOUNDATIONS OF PHYSICS, 2015, 45 (06) : 661 - 672
  • [5] Nonconservative Lagrangian Mechanics: Purely Causal Equations of Motion
    David W. Dreisigmeyer
    Peter M. Young
    Foundations of Physics, 2015, 45 : 661 - 672
  • [6] SOME GEOMETRICAL ASPECTS OF CLASSICAL NON-CONSERVATIVE MECHANICS
    DJUKIC, D
    VUJANOVIC, B
    JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (10) : 2099 - 2102
  • [7] LAGRANGIAN AND HAMILTONIAN MECHANICS WITH FRACTIONAL DERIVATIVES
    Popescu, Emil
    ROMANIAN ASTRONOMICAL JOURNAL, 2013, 23 (02): : 85 - 97
  • [9] Some fractional geometrical aspects of weak field approximation and Schwarzschild spacetime
    Rami, El-Nabulsi Ahmad
    ROMANIAN JOURNAL OF PHYSICS, 2007, 52 (5-7): : 705 - 715
  • [10] 2ND-ORDER DIFFERENTIAL-EQUATIONS AND NONCONSERVATIVE LAGRANGIAN MECHANICS
    DELEON, M
    RODRIGUES, PR
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (15): : 5393 - 5396