Nonconservative Lagrangian and Hamiltonian mechanics

被引:580
|
作者
Riewe, F
机构
[1] ENSCO Inc., Melbourne, FL, 32940
来源
PHYSICAL REVIEW E | 1996年 / 53卷 / 02期
关键词
D O I
10.1103/PhysRevE.53.1890
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Traditional Lagrangian and Hamiltonian mechanics cannot be used with nonconservative forces such as friction. A method is proposed that uses a Lagrangian containing derivatives of fractional order. A direct calculation gives an Euler-Lagrange equation of motion for nonconservative forces. Conjugate momenta are defined and Hamilton's equations are derived using generalized classical mechanics with fractional and higher-order derivatives. The method is applied to the case of a classical frictional force proportional to velocity.
引用
收藏
页码:1890 / 1899
页数:10
相关论文
共 50 条
  • [1] Nonconservative Lagrangian mechanics: a generalized function approach
    Dreisigmeyer, DW
    Young, PM
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (30): : 8297 - 8310
  • [2] LAGRANGIAN AND HAMILTONIAN ROCKET MECHANICS
    PUNGA, V
    [J]. AIAA JOURNAL, 1963, 1 (03) : 709 - 711
  • [3] Classical Mechanics Is Lagrangian; It Is Not Hamiltonian
    Curiel, Erik
    [J]. BRITISH JOURNAL FOR THE PHILOSOPHY OF SCIENCE, 2014, 65 (02): : 269 - 321
  • [4] Commutativity in Lagrangian and Hamiltonian mechanics
    Sridhar, Ananth
    Suris, Yuri B.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2019, 137 : 154 - 161
  • [5] Nonconservative Lagrangian Mechanics: Purely Causal Equations of Motion
    Dreisigmeyer, David W.
    Young, Peter M.
    [J]. FOUNDATIONS OF PHYSICS, 2015, 45 (06) : 661 - 672
  • [6] Nonconservative Lagrangian Mechanics: Purely Causal Equations of Motion
    David W. Dreisigmeyer
    Peter M. Young
    [J]. Foundations of Physics, 2015, 45 : 661 - 672
  • [7] LAGRANGIAN AND HAMILTONIAN MECHANICS WITH FRACTIONAL DERIVATIVES
    Popescu, Emil
    [J]. ROMANIAN ASTRONOMICAL JOURNAL, 2013, 23 (02): : 85 - 97
  • [8] Dirac algebroids in Lagrangian and Hamiltonian mechanics
    Grabowska, Katarzyna
    Grabowski, Janusz
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (11) : 2233 - 2253
  • [9] Some geometrical aspects of fractional nonconservative autonomous lagrangian mechanics
    El-Nabulsi, Rami Ahmad
    [J]. Int. J. Appl. Math. Stat., 1600, SO6 (50-64):
  • [10] Some Geometrical Aspects of Fractional Nonconservative Autonomous Lagrangian Mechanics
    El-Nabulsi, Rami Ahmad
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2006, 5 (S06): : 50 - 64