Nonconservative Lagrangian and Hamiltonian mechanics

被引:580
|
作者
Riewe, F
机构
[1] ENSCO Inc., Melbourne, FL, 32940
来源
PHYSICAL REVIEW E | 1996年 / 53卷 / 02期
关键词
D O I
10.1103/PhysRevE.53.1890
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Traditional Lagrangian and Hamiltonian mechanics cannot be used with nonconservative forces such as friction. A method is proposed that uses a Lagrangian containing derivatives of fractional order. A direct calculation gives an Euler-Lagrange equation of motion for nonconservative forces. Conjugate momenta are defined and Hamilton's equations are derived using generalized classical mechanics with fractional and higher-order derivatives. The method is applied to the case of a classical frictional force proportional to velocity.
引用
收藏
页码:1890 / 1899
页数:10
相关论文
共 50 条
  • [41] PHIPPS LAGRANGIAN AND HAMILTONIAN
    BUENO, MA
    [J]. FOUNDATIONS OF PHYSICS LETTERS, 1994, 7 (04) : 393 - 400
  • [42] ON LAGRANGIAN AND HAMILTONIAN FORMALISM
    NAMBU, Y
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1952, 7 (02): : 131 - 170
  • [43] Lagrangian and Hamiltonian Duality
    Rossi O.
    Saunders D.
    [J]. Journal of Mathematical Sciences, 2016, 218 (6) : 813 - 819
  • [44] LAGRANGIAN AND HAMILTONIAN CONSTRAINTS
    BATLLE, C
    GOMIS, J
    PONS, JM
    ROMAN, N
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1987, 13 (01) : 17 - 23
  • [45] Contact Hamiltonian mechanics. An extension of symplectic Hamiltonian mechanics
    Cruz, Hans
    [J]. SYMMETRIES IN SCIENCE XVII, 2018, 1071
  • [46] ENERGY OF A NONCONSERVATIVE SYSTEM IN QUANTUM-MECHANICS
    COLEGRAVE, RK
    CROXSON, P
    KHEYRABADY, E
    RAMJIT, UAT
    [J]. PHYSICA A, 1989, 161 (01): : 118 - 127
  • [47] Hamiltonian stationary Lagrangian fibrations
    Legendre, Eveline
    Rollin, Yann
    [J]. JOURNAL OF SYMPLECTIC GEOMETRY, 2019, 17 (03) : 753 - 791
  • [48] Lagrangian theory of Hamiltonian reduction
    Gonera, C
    Kosinski, P
    [J]. ACTA PHYSICA POLONICA B, 2003, 34 (08): : 3977 - 3986
  • [49] LAGRANGIAN AND HAMILTONIAN METHODS IN MAGNETOHYDRODYNAMICS
    NEWCOMB, WA
    [J]. NUCLEAR FUSION, 1962, : 451 - 463
  • [50] Hamiltonian versus Lagrangian forms
    Trimarco, C
    [J]. TRENDS IN APPLICATIONS OF MATHEMATICS TO MECHANICS, 2000, 106 : 103 - 111