Lagrangian fractional mechanics - a noncommutative approach

被引:37
|
作者
Klimek, M [1 ]
机构
[1] Czestochowa Tech Univ, Inst Math & Comp Sci, PL-42200 Czestochowa, Poland
关键词
fractional derivative; fractional mechanics; Euler-Lagrange equations;
D O I
10.1007/s10582-006-0024-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The extension of coordinate-velocity space with noncommutative algebra structure is proposed. For action of fractional mechanics considered on such a space the respective Euler-Lagrange equations are derived via minimum action principle. It appears that equations of motion in the noncommutative framework do not mix left and right derivatives thus being simple to solve at least in the linear case. As an example, two models of oscillator with fractional derivatives are studied.
引用
收藏
页码:1447 / 1453
页数:7
相关论文
共 50 条
  • [21] Lagrangian formulation of noncommutative fluid models
    Marcial, M.V.
    Mendes, A.C.R.
    Neves, C.
    Oliveira, W.
    Takakura, F.I.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374 (35): : 3608 - 3613
  • [22] Hamiltonian and Lagrangian dynamics in a noncommutative space
    Malik, RP
    MODERN PHYSICS LETTERS A, 2003, 18 (39) : 2795 - 2806
  • [23] LAGRANGIAN FORMULATION FOR NONCOMMUTATIVE NONLINEAR SYSTEMS
    Abreu, E. M. C.
    Ananias Neto, J.
    Mendes, A. C. R.
    Neves, C.
    Oliveira, W.
    Marcial, M. V.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2012, 27 (09):
  • [24] Lagrangian formulation of noncommutative fluid models
    Marcial, M. V.
    Mendes, A. C. R.
    Neves, C.
    Oliveira, W.
    Takakura, F. I.
    PHYSICS LETTERS A, 2010, 374 (35) : 3608 - 3613
  • [25] Non-holonomic Lagrangian and Hamiltonian mechanics: an intrinsic approach
    Massa, E
    Vignolo, S
    Bruno, D
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (31): : 6713 - 6742
  • [26] A geometric approach to the Gibbs-Appell equations in Lagrangian mechanics
    Carinena, Jose F.
    Fernandez-Nunez, Jose
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (50)
  • [27] Lagrangian mechanics of fractional order, Hamilton-Jacobi fractional PDE and Taylor's series of nondifferentiable functions
    Jumarie, Guy
    CHAOS SOLITONS & FRACTALS, 2007, 32 (03) : 969 - 987
  • [28] QUANTUM MECHANICS IN NONCOMMUTATIVE SPACE
    Galikova, Veronika
    Kovacik, Samuel
    Presnajder, Peter
    ACTA PHYSICA SLOVACA, 2015, 65 (03) : 153 - U83
  • [29] EFFECTIVE LAGRANGIANS FOR NONCOMMUTATIVE MECHANICS
    Acatrinei, C. S.
    PATH INTEGRALS: NEW TRENDS AND PERSPECTIVES, PROCEEDINGS, 2008, : 242 - 247
  • [30] DARBOUX TRANSFORMATIONS IN NONCOMMUTATIVE MECHANICS
    Acatrinei, Ciprian Sorin
    ROMANIAN JOURNAL OF PHYSICS, 2009, 54 (5-6): : 425 - 432