Least-squares reverse time migration with and without source wavelet estimation

被引:12
|
作者
Zhang, Qingchen [1 ]
Zhou, Hui [1 ]
Chen, Hanming [1 ]
Wang, Jie [2 ]
机构
[1] China Univ Petr, CNPC Key Lab Geophys Explorat, State Key Lab Petr Resources & Prospecting, Beijing 102249, Peoples R China
[2] SINOPEC Geophys Res Inst, Nanjing 211103, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
LSRTM; Source wavelet estimation; Deconvolution; Convolution; Hybrid norm; FORM INVERSION; EXTRAPOLATION; PHASE;
D O I
10.1016/j.jappgeo.2016.08.003
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Least-squares reverse time migration (LSRTM) attempts to find the best fit reflectivity model by minimizing the mismatching between the observed and simulated seismic data, where the source wavelet estimation is one of the crucial issues. We divide the frequency-domain observed seismic data by the numerical Green's function at the receiver nodes to estimate the source wavelet for the conventional LSRTM method, and propose the source-independent LSRTM based on a convolution-based objective function. The numerical Green's function can be simulated with a dirac wavelet and the migration velocity in the frequency or time domain. Compared to the conventional method with the additional source estimation procedure, the source-independent LSRTM is insensitive to the source wavelet and can still give full play to the amplitude-preserving ability even using an incorrect wavelet without the source estimation. In order to improve the anti-noise ability, we apply the robust hybrid norm objective function to both the methods and use the synthetic seismic data contaminated by the random Gaussian and spike noises with a signal-to-noise ratio of 5 dB to verify their feasibilities. The final migration images show that the source-independent algorithm is more robust and has a higher amplitude-preserving ability than the conventional source-estimated method. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [31] An efficient least-squares reverse time migration in image domain
    Chen ShengChang
    Li DaiGuang
    Jin ChengMei
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2022, 65 (08): : 3098 - 3107
  • [32] Correlative least-squares reverse time migration in viscoelastic media
    Zhang, Wei
    Gao, Jinghuai
    Li, Feipeng
    Shi, Ying
    Ke, Xuan
    JOURNAL OF APPLIED GEOPHYSICS, 2021, 185
  • [33] Least-squares reverse-time migration with sparsity constraints
    Wu, Di
    Wang, Yanghua
    Cao, Jingjie
    da Silva, Nuno, V
    Yao, Gang
    JOURNAL OF GEOPHYSICS AND ENGINEERING, 2021, 18 (02) : 304 - 316
  • [34] Least-squares reverse-time migration for reflectivity imaging
    Gang Yao
    Di Wu
    Science China Earth Sciences, 2015, 58 : 1982 - 1992
  • [35] Improved subsalt images with least-squares reverse time migration
    Wang, Ping
    Huang, Shouting
    Wang, Ming
    INTERPRETATION-A JOURNAL OF SUBSURFACE CHARACTERIZATION, 2017, 5 (03): : SN25 - SN32
  • [36] The least-squares reverse time migration with gradient optimization based on QHAdam
    Wang ShaoWen
    Song Peng
    Tan Jun
    Xie Chuang
    Zhao Bo
    Mao ShiBo
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2022, 65 (07): : 2673 - 2680
  • [37] Least-squares reverse-time migration based on reflection theory
    Duan X.
    Wang H.
    Deng G.
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2020, 55 (06): : 1305 - 1311
  • [38] Least-squares reverse time migration with shifted total variation regularization
    Zand, Toktam
    Ghasemzadeh, Hasan
    Gholami, Ali
    Malcolm, Alison
    GEOPHYSICS, 2023, 88 (02) : S59 - S69
  • [39] Elastic least-squares reverse time migration with velocities and density perturbation
    Qu, Yingming
    Li, Jinli
    Huang, Jianping
    Li, Zhenchun
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2018, 212 (02) : 1033 - 1056
  • [40] Joint least-squares reverse time migration of primary and prismatic waves
    Yang, Jizhong
    Liu, Yuzhu
    Li, Yunyue Elita
    Cheng, Arthur
    Dong, Liangguo
    Du, Yue
    GEOPHYSICS, 2019, 84 (01) : S29 - S40