Least-squares reverse time migration with and without source wavelet estimation

被引:12
|
作者
Zhang, Qingchen [1 ]
Zhou, Hui [1 ]
Chen, Hanming [1 ]
Wang, Jie [2 ]
机构
[1] China Univ Petr, CNPC Key Lab Geophys Explorat, State Key Lab Petr Resources & Prospecting, Beijing 102249, Peoples R China
[2] SINOPEC Geophys Res Inst, Nanjing 211103, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
LSRTM; Source wavelet estimation; Deconvolution; Convolution; Hybrid norm; FORM INVERSION; EXTRAPOLATION; PHASE;
D O I
10.1016/j.jappgeo.2016.08.003
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Least-squares reverse time migration (LSRTM) attempts to find the best fit reflectivity model by minimizing the mismatching between the observed and simulated seismic data, where the source wavelet estimation is one of the crucial issues. We divide the frequency-domain observed seismic data by the numerical Green's function at the receiver nodes to estimate the source wavelet for the conventional LSRTM method, and propose the source-independent LSRTM based on a convolution-based objective function. The numerical Green's function can be simulated with a dirac wavelet and the migration velocity in the frequency or time domain. Compared to the conventional method with the additional source estimation procedure, the source-independent LSRTM is insensitive to the source wavelet and can still give full play to the amplitude-preserving ability even using an incorrect wavelet without the source estimation. In order to improve the anti-noise ability, we apply the robust hybrid norm objective function to both the methods and use the synthetic seismic data contaminated by the random Gaussian and spike noises with a signal-to-noise ratio of 5 dB to verify their feasibilities. The final migration images show that the source-independent algorithm is more robust and has a higher amplitude-preserving ability than the conventional source-estimated method. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [21] Least-squares reverse time migration with a multiplicative Cauchy constraint
    Yao, Gang
    Wu, Bo
    da Silva, Nuno V.
    Debens, Henry A.
    Wu, Di
    Cao, Jingjie
    GEOPHYSICS, 2022, 87 (03) : S151 - S167
  • [22] Least-Squares Reverse Time Migration With Regularization by Denoising Scheme
    Peng, Guangshuai
    Gong, Xiangbo
    Hu, Bin
    Xu, Zhuo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [23] Least-squares reverse-time migration for reflectivity imaging
    YAO Gang
    WU Di
    Science China Earth Sciences, 2015, 58 (11) : 1982 - 1992
  • [24] Least-squares reverse time migration based on unstructured gird
    Yang Kai
    Zhang Jian-Feng
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2017, 60 (03): : 1053 - 1061
  • [25] A stable and practical implementation of least-squares reverse time migration
    Zhang, Yu
    Duan, Lian
    Xie, Yi
    GEOPHYSICS, 2015, 80 (01) : V23 - V31
  • [26] Least-squares reverse-time migration for reflectivity imaging
    Yao Gang
    Wu Di
    SCIENCE CHINA-EARTH SCIENCES, 2015, 58 (11) : 1982 - 1992
  • [27] Least-squares reverse time migration in the presence of velocity errors
    Yang, Jizhong
    Li, Yunyue Elita
    Cheng, Arthur
    Liu, Yuzhu
    Dong, Liangguo
    GEOPHYSICS, 2019, 84 (06) : S567 - S580
  • [28] Least-squares reverse time migration of multiples in viscoacoustic media
    Li, Zhina
    Li, Zhenchun
    Li, Qingqing
    Li, Qingyang
    Sun, Miaomiao
    Hu, Pengcheng
    Li, Linlin
    GEOPHYSICS, 2020, 85 (05) : S285 - S297
  • [29] Attenuation compensation in anisotropic least-squares reverse time migration
    Qu, Yingming
    Huang, Jianping
    Li, Zhenchun
    Guan, Zhe
    Li, Jinli
    GEOPHYSICS, 2017, 82 (06) : S411 - S423
  • [30] Least-squares reverse time migration in the presence of density variations
    Yang, Jizhong
    Liu, Yuzhu
    Dong, Liangguo
    GEOPHYSICS, 2016, 81 (06) : S497 - S509