Generalized Sidon sets of perfect powers

被引:0
|
作者
Kiss, Sandor Z. [1 ]
Sandor, Csaba [2 ,3 ,4 ]
机构
[1] Budapest Univ Technol & Econ, Inst Math, Dept Algebra, Muegyet Rkp 3, H-1111 Budapest, Hungary
[2] Budapest Univ Technol & Econ, Inst Math, Dept Stochast, Muegyet Rkp 3, H-1111 Budapest, Hungary
[3] Budapest Univ Technol & Econ, Dept Comp Sci & Informat Theory, Muegyet Rkp 3, H-1111 Budapest, Hungary
[4] ELKH, MTA BME Lendulet Arithmet Combinator Res Grp, Muegyet Rkp 3, H-1111 Budapest, Hungary
来源
RAMANUJAN JOURNAL | 2022年 / 59卷 / 02期
关键词
Additive number theory; General sequences; Additive representation function; Sidon set;
D O I
10.1007/s11139-022-00622-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For h >= 2 and an infinite set of positive integers A, let R-A,R-h(n) denote the number of representations of the positive integer n as the sum of h distinct terms from A. A set of positive integers A is called a B-h[g] set if every positive integer can be written as the sum of h not necessarily distinct terms from A at most g different ways. We say a set A is a basis of order h if every positive integer can be represented as the sum of h terms from A. Recently, Vu [17] proved the existence of a thin basis of order h formed by perfect powers. In this paper, we study weak B-h[g] sets formed by perfect powers. In particular, we prove the existence of a set A formed by perfect powers with almost possible maximal density such that R-A,R-h(n) is bounded by using probabilistic methods.
引用
收藏
页码:351 / 363
页数:13
相关论文
共 50 条
  • [1] Generalized Sidon sets of perfect powers
    Sándor Z. Kiss
    Csaba Sándor
    The Ramanujan Journal, 2022, 59 : 351 - 363
  • [2] On generalized perfect difference sets constructed from Sidon sets
    Fang, Jin-Hui
    DISCRETE MATHEMATICS, 2021, 344 (12)
  • [3] Generalized Sidon sets
    Cilleruelo, Javier
    Ruzsa, Imre
    Vinuesa, Carlos
    ADVANCES IN MATHEMATICS, 2010, 225 (05) : 2786 - 2807
  • [4] Constructions of generalized Sidon sets
    Martin, Greg
    O'Bryant, Kevin
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (04) : 591 - 607
  • [5] On the number of generalized Sidon sets
    József Balogh
    Lina Li
    P. Hajnal
    Acta Scientiarum Mathematicarum, 2021, 87 : 3 - 21
  • [6] Generalized multiplicative Sidon sets
    Pach, Peter Pal
    JOURNAL OF NUMBER THEORY, 2015, 157 : 507 - 529
  • [7] Perfect difference sets constructed from Sidon sets
    Cilleruelo, Javier
    Nathanson, Melvyn B.
    COMBINATORICA, 2008, 28 (04) : 401 - 414
  • [8] On the number of generalized Sidon sets
    Balogh, Jozsef
    Li, Lina
    ACTA SCIENTIARUM MATHEMATICARUM, 2021, 87 (1-2): : 3 - 21
  • [9] Bounds for generalized Sidon sets
    Peng, Xing
    Tesoro, Rafael
    Timmons, Craig
    DISCRETE MATHEMATICS, 2015, 338 (03) : 183 - 190
  • [10] Perfect difference sets constructed from Sidon sets
    Javier Cilleruelo
    Melvyn B. Nathanson
    Combinatorica, 2008, 28 : 401 - 414