Symbol-Pair Distances of Repeated-Root Negacyclic Codes of Length 2s over Galois Rings

被引:0
|
作者
Dinh, Hai Q. [1 ]
Liu, Hualu [2 ]
Tansuchat, Roengchai [3 ]
Vo, Thang M. [4 ,5 ]
机构
[1] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
[2] Hubei Univ Technol, Sch Sci, Wuhan 430068, Peoples R China
[3] Chiang Mai Univ, Fac Econ, Ctr Excellence Econometr, Chiang Mai 52000, Thailand
[4] Ohio Univ, Dept Math, Athens, OH 45701 USA
[5] Ind Univ Vinh, Dept Gen Educ, Vinh City, Vietnam
关键词
negacyclic codes; repeated-root codes; symbol-pair distance; MDS codes; CYCLIC CODES; CONSTACYCLIC CODES; EXPLICIT REPRESENTATION; HAMMING DISTANCES; Z(4); ENUMERATION; PREPARATA; KERDOCK;
D O I
10.1142/S1005386721000468
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Negacyclic codes of length 2(s) over the Galois ring GR(2(a), m) are linearly ordered under set-theoretic inclusion, i.e., they are the ideals <(x + 1)(i)>, 0 <= i <= 2(s) a, of the chain ring GR(2(a), m)[x]/< x(2s) + 1 >. This structure is used to obtain the symbol-pair distances of all such negacyclic codes. Among others, for the special case when the alphabet is the finite field F-2m (i.e., a = 1), the symbol-pair distance distribution of constacyclic codes over F-2m verifies the Singleton bound for such symbol-pair codes, and provides all maximum distance separable symbol-pair constacyclic codes of length 2(s) over F-2m.
引用
收藏
页码:581 / 600
页数:20
相关论文
共 50 条