Symbol-Pair Distances of Repeated-Root Negacyclic Codes of Length 2s over Galois Rings

被引:0
|
作者
Dinh, Hai Q. [1 ]
Liu, Hualu [2 ]
Tansuchat, Roengchai [3 ]
Vo, Thang M. [4 ,5 ]
机构
[1] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
[2] Hubei Univ Technol, Sch Sci, Wuhan 430068, Peoples R China
[3] Chiang Mai Univ, Fac Econ, Ctr Excellence Econometr, Chiang Mai 52000, Thailand
[4] Ohio Univ, Dept Math, Athens, OH 45701 USA
[5] Ind Univ Vinh, Dept Gen Educ, Vinh City, Vietnam
关键词
negacyclic codes; repeated-root codes; symbol-pair distance; MDS codes; CYCLIC CODES; CONSTACYCLIC CODES; EXPLICIT REPRESENTATION; HAMMING DISTANCES; Z(4); ENUMERATION; PREPARATA; KERDOCK;
D O I
10.1142/S1005386721000468
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Negacyclic codes of length 2(s) over the Galois ring GR(2(a), m) are linearly ordered under set-theoretic inclusion, i.e., they are the ideals <(x + 1)(i)>, 0 <= i <= 2(s) a, of the chain ring GR(2(a), m)[x]/< x(2s) + 1 >. This structure is used to obtain the symbol-pair distances of all such negacyclic codes. Among others, for the special case when the alphabet is the finite field F-2m (i.e., a = 1), the symbol-pair distance distribution of constacyclic codes over F-2m verifies the Singleton bound for such symbol-pair codes, and provides all maximum distance separable symbol-pair constacyclic codes of length 2(s) over F-2m.
引用
收藏
页码:581 / 600
页数:20
相关论文
共 50 条
  • [21] On the Symbol-Pair Distance of Repeated-Root Constacyclic Codes of Prime Power Lengths
    Dinh, Hai Q.
    Bac Trong Nguyen
    Singh, Abhay Kumar
    Sriboonchitta, Songsak
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (04) : 2417 - 2430
  • [22] MDS Symbol-Pair Repeated-Root Constacylic Codes of Prime Power Lengths Over Fpm + uFpm
    Dinh, H. Q.
    Kumam, P.
    Kumar, P.
    Satpati, S.
    Singh, A. K.
    Yamaka, W.
    IEEE ACCESS, 2019, 7 : 145039 - 145048
  • [23] Polycyclic codes over Galois rings with applications to repeated-root constacyclic codes
    Lopez-Permouth, Sergio R.
    Ozadam, Hakan
    Ozbudak, Ferruh
    Szabo, Steve
    FINITE FIELDS AND THEIR APPLICATIONS, 2013, 19 (01) : 16 - 38
  • [24] Repeated-root constacyclic codes of length 2s over Z2α
    Dinh, Hai Q.
    ALGEBRA AND ITS APPLICATIONS, 2006, 419 : 95 - 110
  • [25] ON THE HAMMING WEIGHT OF REPEATED ROOT CYCLIC AND NEGACYCLIC CODES OVER GALOIS RINGS
    Lopez-Permouth, Sergio R.
    Szabo, Steve
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2009, 3 (04) : 409 - 420
  • [26] MDS symbol-pair repeated-root constacylic codes of prime power lengths over Fq + uFq + u2Fq
    Laaouine, Jamal
    Hai Q Dinh
    Charkani, Mohammed E.
    Yamaka, Woraphon
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (01) : 219 - 250
  • [27] On b-Symbol Distances of Repeated-Root Constacyclic Codes
    Sharma, Anuradha
    Sidana, Tania
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (12) : 7848 - 7867
  • [28] Repeated-Root Cyclic and Negacyclic Codes of Length 6ps
    Dinh, Hai Q.
    RING THEORY AND ITS APPLICATIONS: RING THEORY SESSION IN HONOR OF T.Y. LAM ON HIS 70TH BIRTHDAY, 2014, 609 : 69 - 87
  • [29] Symbol-Pair Distance of Repeated-Root Constacyclic Codes of Prime Power Lengths over Fpm[u]/⟨u3⟩
    Charkani, Mohammed E.
    Dinh, Hai Q.
    Laaouine, Jamal
    Yamaka, Woraphon
    MATHEMATICS, 2021, 9 (20)
  • [30] The Hamming Distances of Negacyclic Codes of Length 2s over GR(2a,m)
    Shixin Zhu
    Xiaoshan Kai
    Journal of Systems Science and Complexity, 2008, 21 : 60 - 66