Symbol-Pair Distances of Repeated-Root Negacyclic Codes of Length 2s over Galois Rings

被引:0
|
作者
Dinh, Hai Q. [1 ]
Liu, Hualu [2 ]
Tansuchat, Roengchai [3 ]
Vo, Thang M. [4 ,5 ]
机构
[1] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
[2] Hubei Univ Technol, Sch Sci, Wuhan 430068, Peoples R China
[3] Chiang Mai Univ, Fac Econ, Ctr Excellence Econometr, Chiang Mai 52000, Thailand
[4] Ohio Univ, Dept Math, Athens, OH 45701 USA
[5] Ind Univ Vinh, Dept Gen Educ, Vinh City, Vietnam
关键词
negacyclic codes; repeated-root codes; symbol-pair distance; MDS codes; CYCLIC CODES; CONSTACYCLIC CODES; EXPLICIT REPRESENTATION; HAMMING DISTANCES; Z(4); ENUMERATION; PREPARATA; KERDOCK;
D O I
10.1142/S1005386721000468
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Negacyclic codes of length 2(s) over the Galois ring GR(2(a), m) are linearly ordered under set-theoretic inclusion, i.e., they are the ideals <(x + 1)(i)>, 0 <= i <= 2(s) a, of the chain ring GR(2(a), m)[x]/< x(2s) + 1 >. This structure is used to obtain the symbol-pair distances of all such negacyclic codes. Among others, for the special case when the alphabet is the finite field F-2m (i.e., a = 1), the symbol-pair distance distribution of constacyclic codes over F-2m verifies the Singleton bound for such symbol-pair codes, and provides all maximum distance separable symbol-pair constacyclic codes of length 2(s) over F-2m.
引用
收藏
页码:581 / 600
页数:20
相关论文
共 50 条
  • [11] Hamming and Symbol-Pair Distances of Repeated-Root Constacyclic Codes of Prime Power Lengths Over Fpm + uFpm
    Dinh, Hai Q.
    Bac Trong Nguyen
    Singh, Abhay Kumar
    Sriboonchitta, Songsak
    IEEE COMMUNICATIONS LETTERS, 2018, 22 (12) : 2400 - 2403
  • [12] The symbol-pair distance distribution of a class of repeated-root cyclic codes over Fpm
    Sun, Zhonghua
    Zhu, Shixin
    Wang, Liqi
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2018, 10 (04): : 643 - 653
  • [13] REPEATED-ROOT CONSTACYCLIC CODES OF LENGTH 2ps OVER GALOIS RINGS
    Klin-Eam, Chakkrid
    Sriwirach, Wateekorn
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (01) : 131 - 150
  • [14] Repeated Root Cyclic and Negacyclic Codes over Galois Rings
    Lopez-Permouth, Sergio R.
    Szabo, Steve
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS, AND ERROR-CORRECTING CODES, 2009, 5527 : 219 - 222
  • [15] A NEW CLASS OF AMDS SYMBOL-PAIR CODES FROM REPEATED-ROOT CODES
    Yang, Jin
    Kai, Xiaoshan
    Tang, Yongsheng
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2024,
  • [16] On structure and distances of some classes of repeated-root constacyclic codes over Galois rings
    Dinh, Hai Q.
    Liu, Hongwei
    Liu, Xiu-sheng
    Sriboonchitta, Songsak
    FINITE FIELDS AND THEIR APPLICATIONS, 2017, 43 : 86 - 105
  • [17] MDS and AMDS symbol-pair codes constructed from repeated-root cyclic codes
    Tang, Xiuxin
    Luo, Rong
    FINITE FIELDS AND THEIR APPLICATIONS, 2023, 89
  • [18] ON SYMBOL-PAIR DISTANCE DISTRIBUTIONS OF REPEATED-ROOT CONSTACYCLIC CODES OF LENGTH 4ps AND MDS CODES
    Dinh, Hai q.
    Singh, Abhay kumar
    Thakur, Madhu kant
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2025,
  • [19] On Some Classes of Repeated-root Constacyclic Codes of Length a Power of 2 over Galois Rings
    Dinh, Hai Q.
    ADVANCES IN RING THEORY, 2010, : 131 - 147
  • [20] Some Repeated-Root Constacyclic Codes Over Galois Rings
    Liu, Hongwei
    Maouche, Youcef
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (10) : 6247 - 6255