Symbol-Pair Distances of Repeated-Root Negacyclic Codes of Length 2s over Galois Rings

被引:0
|
作者
Dinh, Hai Q. [1 ]
Liu, Hualu [2 ]
Tansuchat, Roengchai [3 ]
Vo, Thang M. [4 ,5 ]
机构
[1] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
[2] Hubei Univ Technol, Sch Sci, Wuhan 430068, Peoples R China
[3] Chiang Mai Univ, Fac Econ, Ctr Excellence Econometr, Chiang Mai 52000, Thailand
[4] Ohio Univ, Dept Math, Athens, OH 45701 USA
[5] Ind Univ Vinh, Dept Gen Educ, Vinh City, Vietnam
关键词
negacyclic codes; repeated-root codes; symbol-pair distance; MDS codes; CYCLIC CODES; CONSTACYCLIC CODES; EXPLICIT REPRESENTATION; HAMMING DISTANCES; Z(4); ENUMERATION; PREPARATA; KERDOCK;
D O I
10.1142/S1005386721000468
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Negacyclic codes of length 2(s) over the Galois ring GR(2(a), m) are linearly ordered under set-theoretic inclusion, i.e., they are the ideals <(x + 1)(i)>, 0 <= i <= 2(s) a, of the chain ring GR(2(a), m)[x]/< x(2s) + 1 >. This structure is used to obtain the symbol-pair distances of all such negacyclic codes. Among others, for the special case when the alphabet is the finite field F-2m (i.e., a = 1), the symbol-pair distance distribution of constacyclic codes over F-2m verifies the Singleton bound for such symbol-pair codes, and provides all maximum distance separable symbol-pair constacyclic codes of length 2(s) over F-2m.
引用
收藏
页码:581 / 600
页数:20
相关论文
共 50 条
  • [1] On symbol-pair distances of repeated-root constacyclic codes of length 2ps over Fpm + uFpm and MDS symbol-pair codes
    Dinh, Hai Q.
    Singh, Abhay Kumar
    Thakur, Madhu Kant
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2023, 34 (06) : 1027 - 1043
  • [2] On the symbol-pair distances of repeated-root constacyclic codes of length 2ps
    Dinh, Hai Q.
    Wang, Xiaoqiang
    Liu, Hongwei
    Sriboonchitta, Songsak
    DISCRETE MATHEMATICS, 2019, 342 (11) : 3062 - 3078
  • [3] Negacyclic codes of length 2s over Galois rings
    Dinh, HQ
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (12) : 4252 - 4262
  • [4] On the symbol-pair distance of some classes of repeated-root constacyclic codes over Galois ring
    Dinh, Hai Q.
    Kumar, Narendra
    Singh, Abhay Kumar
    Singh, Manoj Kumar
    Gupta, Indivar
    Maneejuk, Paravee
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2023, 34 (01) : 111 - 128
  • [5] On the symbol-pair distance of some classes of repeated-root constacyclic codes over Galois ring
    Hai Q. Dinh
    Narendra Kumar
    Abhay Kumar Singh
    Manoj Kumar Singh
    Indivar Gupta
    Paravee Maneejuk
    Applicable Algebra in Engineering, Communication and Computing, 2023, 34 : 111 - 128
  • [6] MDS symbol-pair codes from repeated-root cyclic codes
    Ma, Junru
    Luo, Jinquan
    DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (01) : 121 - 137
  • [7] Symbol-pair distance of some repeated-root constacyclic codes of length ps over the Galois ring GR(pa, m)
    Dinh, Hai Q.
    Kewat, Pramod Kumar
    Mondal, Nilay Kumar
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2024, 35 (02) : 195 - 205
  • [8] New MDS Symbol-Pair Codes From Repeated-Root Codes
    Kai, Xiaoshan
    Zhu, Shixin
    Zhao, Yusen
    Luo, Huarong
    Chen, Zhe
    IEEE COMMUNICATIONS LETTERS, 2018, 22 (03) : 462 - 465
  • [9] AMDS symbol-pair codes from repeated-root cyclic codes
    Ma, Junru
    Luo, Jinquan
    DISCRETE MATHEMATICS, 2023, 346 (07)
  • [10] MDS symbol-pair codes from repeated-root cyclic codes
    Junru Ma
    Jinquan Luo
    Designs, Codes and Cryptography, 2022, 90 : 121 - 137