Eigenvalues of the Steklov problem in an infinite cylinder

被引:0
|
作者
Motygin, OV [1 ]
Kuznetsov, NG [1 ]
机构
[1] Inst Problems Mech Engn, St Petersburg 199178, Russia
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The Steklov problem is considered in cylindrical domains; the coefficient in the boundary condition has a compact support and is an even function of a coordinate varying along the generators. We study the dependence of eigenvalues on the spacing between two symmetric parts of the coefficient's support. It is proved that the antisymmetric (symmetric) eigenvalues are monotonically decreasing (increasing) functions of the spacing and formulae for their derivatives are obtained. Application to the sloshing problem in a channel covered by a dock with two equal rectangular gaps is given.
引用
收藏
页码:463 / 468
页数:6
相关论文
共 50 条
  • [41] Monotonicity of Steklov eigenvalues on graphs and applications
    Yu, Chengjie
    Yu, Yingtao
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (03)
  • [42] On asymptotic properties of biharmonic Steklov eigenvalues
    Liu, Genqian
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (09) : 4729 - 4757
  • [43] Trace and inverse trace of Steklov eigenvalues
    Shi, Yongjie
    Yu, Chengjie
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (03) : 2026 - 2040
  • [44] OPTIMAL SHAPES MAXIMIZING THE STEKLOV EIGENVALUES
    Bogosel, B.
    Bucur, D.
    Giacomini, A.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (02) : 1645 - 1680
  • [45] Steklov eigenvalues of nearly hyperspherical domains
    Han Tan, Chee
    Viator, Robert
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2024, 480 (2287):
  • [46] AN INEQUALITY FOR STEKLOV EIGENVALUES FOR PLANAR DOMAINS
    EDWARD, J
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1994, 45 (03): : 493 - 496
  • [47] Higher Dimensional Surgery and Steklov Eigenvalues
    Han Hong
    The Journal of Geometric Analysis, 2021, 31 : 11931 - 11951
  • [48] Electromagnetic Steklov eigenvalues: approximation analysis
    Halla, Martin
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 (01): : 57 - 76
  • [49] REMOVAL OF INFINITE EIGENVALUES IN THE GENERALIZED MATRIX EIGENVALUE PROBLEM
    GOUSSIS, DA
    PEARLSTEIN, AJ
    JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 84 (01) : 242 - 246
  • [50] Rate of convergence of eigenvalues to singularly perturbed Steklov-type problem for elasticity system
    Chechkina, Aleksandra G.
    D'Apice, Ciro
    De Maio, Umberto
    APPLICABLE ANALYSIS, 2019, 98 (1-2) : 32 - 44