Eigenvalues of the Steklov problem in an infinite cylinder

被引:0
|
作者
Motygin, OV [1 ]
Kuznetsov, NG [1 ]
机构
[1] Inst Problems Mech Engn, St Petersburg 199178, Russia
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The Steklov problem is considered in cylindrical domains; the coefficient in the boundary condition has a compact support and is an even function of a coordinate varying along the generators. We study the dependence of eigenvalues on the spacing between two symmetric parts of the coefficient's support. It is proved that the antisymmetric (symmetric) eigenvalues are monotonically decreasing (increasing) functions of the spacing and formulae for their derivatives are obtained. Application to the sloshing problem in a channel covered by a dock with two equal rectangular gaps is given.
引用
收藏
页码:463 / 468
页数:6
相关论文
共 50 条
  • [31] Optimization of Steklov-Neumann eigenvalues
    Ammaria, Habib
    Imeri, Kthim
    Nigam, Nilima
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 406
  • [32] A comparison between Neumann and Steklov eigenvalues
    Henrot, Antoine
    Michetti, Marco
    JOURNAL OF SPECTRAL THEORY, 2022, 12 (04) : 1405 - 1442
  • [33] Upper bounds for the Steklov eigenvalues on trees
    He, Zunwu
    Hua, Bobo
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (03)
  • [34] Estimates for eigenvalues of the Neumann and Steklov problems
    Du, Feng
    Mao, Jing
    Wang, Qiaoling
    Xia, Changyu
    Zhao, Yan
    ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01)
  • [35] Higher Dimensional Surgery and Steklov Eigenvalues
    Hong, Han
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (12) : 11931 - 11951
  • [36] Extremal problems for Steklov eigenvalues on annuli
    Xu-Qian Fan
    Luen-Fai Tam
    Chengjie Yu
    Calculus of Variations and Partial Differential Equations, 2015, 54 : 1043 - 1059
  • [37] STEKLOV EIGENVALUES OF NEARLY SPHERICAL DOMAINS
    Viator, Robert
    Osting, Braxton
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2022, 60 (03) : 1546 - 1562
  • [38] Large Steklov eigenvalues on hyperbolic surfaces
    Han, Xiaolong Hans
    He, Yuxin
    Hong, Han
    MATHEMATISCHE ZEITSCHRIFT, 2024, 308 (02)
  • [39] Upper bounds for the Steklov eigenvalues on trees
    Zunwu He
    Bobo Hua
    Calculus of Variations and Partial Differential Equations, 2022, 61
  • [40] Rigidity of a trace estimate for Steklov eigenvalues
    Shi, Yongjie
    Yu, Chengjie
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 278 : 50 - 59