Steklov eigenvalues of nearly hyperspherical domains

被引:0
|
作者
Han Tan, Chee [1 ]
Viator, Robert [2 ]
机构
[1] Wake Forest Univ, Dept Math, Winston Salem, NC 27106 USA
[2] Denison Univ, Dept Math, Granville, OH 43023 USA
关键词
Steklov eigenvalues; perturbation theory; isoperimetric inequality; INEQUALITY;
D O I
10.1098/rspa.2023.0734
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider Steklov eigenvalues of nearly hyperspherical domains in Rd+1 with d >= 3. In previous work, treating such domains as perturbations of the ball, we proved that the Steklov eigenvalues are analytic functions of the domain perturbation parameter. Here, we compute the first-order term of the asymptotic expansion and show that the first-order perturbations are eigenvalues of a Hermitian matrix, whose entries can be written explicitly in terms of Pochhammer's and Wigner 3j-symbols. We analyse the asymptotic expansion and show the following isoperimetric results among domains with fixed volume: (i) for an infinite subset of Steklov eigenvalues, the ball is not optimal and (ii) for a different infinite subset of Steklov eigenvalues, the ball is a stationary point.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Analyticity of Steklov eigenvalues of nearly hyperspherical domains in Rd+1
    Tan, Chee Han
    Viator, Robert
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2024, 11 (01)
  • [2] STEKLOV EIGENVALUES OF NEARLY SPHERICAL DOMAINS
    Viator, Robert
    Osting, Braxton
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2022, 60 (03) : 1546 - 1562
  • [3] Analyticity of Steklov eigenvalues of nearly circular and nearly spherical domains
    Viator, Robert
    Osting, Braxton
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2020, 7 (01)
  • [4] Analyticity of Steklov eigenvalues of nearly circular and nearly spherical domains
    Robert Viator
    Braxton Osting
    Research in the Mathematical Sciences, 2020, 7
  • [5] Steklov eigenvalues of reflection-symmetric nearly circular planar domains
    Viator, Robert
    Osting, Braxton
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2220):
  • [6] AN INEQUALITY FOR STEKLOV EIGENVALUES FOR PLANAR DOMAINS
    EDWARD, J
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1994, 45 (03): : 493 - 496
  • [7] A SHAPE OPTIMIZATION PROBLEM FOR STEKLOV EIGENVALUES IN OSCILLATING DOMAINS
    Fernandez Bonder, Julian
    Spedaletti, Juan F.
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2017, 23 (02) : 373 - 390
  • [8] Estimates on the Neumann and Steklov principal eigenvalues of collapsing domains
    Acampora, P.
    Amato, V.
    Cristoforoni, E.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2025,
  • [9] Sharp bounds for Steklov eigenvalues on star-shaped domains
    Verma, Sheela
    Santhanam, G.
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2020, 11 (02) : 47 - 56
  • [10] Steklov Eigenvalues and Quasiconformal Maps of Simply Connected Planar Domains
    Girouard, A.
    Laugesen, R. S.
    Siudeja, B. A.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 219 (02) : 903 - 936