INVERSE PROBLEMS FOR THE CONNECTION LAPLACIAN

被引:26
|
作者
Kurylev, Yaroslav [1 ]
Oksanen, Lauri [1 ]
Paternain, Gabriel P. [2 ]
机构
[1] UCL, Dept Math, Gower St, London WC1E 6BT, England
[2] Univ Cambridge, Dept Pure Math & Math Stat, Cambridge CB3 0WB, England
基金
英国工程与自然科学研究理事会;
关键词
X-RAY TRANSFORM; WAVE-EQUATION; OPERATOR; THEOREM;
D O I
10.4310/jdg/1542423627
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We reconstruct a Riemannian manifold and a Hermitian vector bundle with compatible connection from the hyperbolic Dirichletto-Neumann operator associated with the wave equation of the connection Laplacian. The boundary data is local and the reconstruction is up to the natural gauge transformations of the problem. As a corollary we derive an elliptic analogue of the main result which solves a Calderon problem for connections on a cylinder.
引用
收藏
页码:457 / 494
页数:38
相关论文
共 50 条
  • [11] On nodal and generalized singular structures of Laplacian eigenfunctions and applications to inverse scattering problems
    Cao, Xinlin
    Diao, Huaian
    Liu, Hongyu
    Zou, Jun
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 143 : 116 - 161
  • [12] The Adiabatic Limit of the Connection Laplacian
    Stefan Haag
    Jonas Lampart
    The Journal of Geometric Analysis, 2019, 29 : 2644 - 2673
  • [13] Approximations of the connection Laplacian spectra
    Dmitri Burago
    Sergei Ivanov
    Yaroslav Kurylev
    Jinpeng Lu
    Mathematische Zeitschrift, 2022, 301 : 3185 - 3206
  • [14] The Adiabatic Limit of the Connection Laplacian
    Haag, Stefan
    Lampart, Jonas
    JOURNAL OF GEOMETRIC ANALYSIS, 2019, 29 (03) : 2644 - 2673
  • [15] Approximations of the connection Laplacian spectra
    Burago, Dmitri
    Ivanov, Sergei
    Kurylev, Yaroslav
    Lu, Jinpeng
    MATHEMATISCHE ZEITSCHRIFT, 2022, 301 (03) : 3185 - 3206
  • [16] NUMERICAL SOLUTIONS OF DIRECT AND INVERSE STOKES PROBLEMS BY THE METHOD OF FUNDAMENTAL SOLUTIONS AND THE LAPLACIAN DECOMPOSITION
    Fan, Chia-Ming
    Li, Po-Wei
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2015, 68 (03) : 204 - 223
  • [17] ON NOVEL GEOMETRIC STRUCTURES OF LAPLACIAN EIGENFUNCTIONS IN R3 AND APPLICATIONS TO INVERSE PROBLEMS
    Cao, Xinlin
    Diao, Huaian
    Liu, Hongyu
    Zou, Jun
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (02) : 1263 - 1294
  • [18] INVERSE PROBLEMS FOR THE FRACTIONAL-LAPLACIAN WITH LOWER ORDER NON-LOCAL PERTURBATIONS
    Bhattacharyya, S.
    Ghosh, T.
    Uhlmann, G.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (05) : 3053 - 3075
  • [19] Inverse problems for a class of elliptic obstacle problems involving multivalued convection term and weighted (p, q)-Laplacian
    Zeng, Shengda
    Migorski, Stanislaw
    Khan, Akhtar A.
    Yao, Jen-Chih
    OPTIMIZATION, 2023, 72 (01) : 321 - 349
  • [20] Vector diffusion maps and the connection Laplacian
    Singer, A.
    Wu, H. -T.
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2012, 65 (08) : 1067 - 1144