Approximations of the connection Laplacian spectra

被引:1
|
作者
Burago, Dmitri [1 ]
Ivanov, Sergei [2 ]
Kurylev, Yaroslav [3 ]
Lu, Jinpeng [3 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Russian Acad Sci, Steklov Math Inst, St Petersburg Dept, Fontanka 27, St Petersburg 191023, Russia
[3] Univ Helsinki, Dept Math & Stat, Helsinki 00014, Finland
关键词
Connection Laplacian; Spectral convergence; Discretization; DIFFUSION MAPS;
D O I
10.1007/s00209-022-03016-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a convolution-type operator on vector bundles over metric-measure spaces. This operator extends the analogous convolution Laplacian on functions in our earlier work to vector bundles, and is a natural extension of the graph connection Laplacian. We prove that for Euclidean or Hermitian connections on closed Riemannian manifolds, the spectrum of this operator and that of the graph connection Laplacian both approximate the spectrum of the connection Laplacian.
引用
收藏
页码:3185 / 3206
页数:22
相关论文
共 50 条
  • [1] Approximations of the connection Laplacian spectra
    Dmitri Burago
    Sergei Ivanov
    Yaroslav Kurylev
    Jinpeng Lu
    Mathematische Zeitschrift, 2022, 301 : 3185 - 3206
  • [2] Graph approximations to the Laplacian spectra
    Lu, Jinpeng
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2022, 14 (01) : 111 - 145
  • [3] A connection between ordinary and Laplacian spectra of bipartite graphs
    Zhou, Bo
    Gutman, Ivan
    LINEAR & MULTILINEAR ALGEBRA, 2008, 56 (03): : 305 - 310
  • [4] THE SPECTRA OF THE LAPLACIAN
    WONG, MW
    JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 100 (02) : 411 - 418
  • [5] Spectra, signless Laplacian and Laplacian spectra of complementary prisms of graphs
    Cardoso, Domingos M.
    Carvalho, Paula
    de Freitas, Maria Aguieiras A.
    Vinagre, Cybele T. M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 544 : 325 - 338
  • [6] The Adiabatic Limit of the Connection Laplacian
    Stefan Haag
    Jonas Lampart
    The Journal of Geometric Analysis, 2019, 29 : 2644 - 2673
  • [7] Generalized Laplacian approximations in Bayesian inference
    Hsu, JSJ
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1995, 23 (04): : 399 - 410
  • [8] The Adiabatic Limit of the Connection Laplacian
    Haag, Stefan
    Lampart, Jonas
    JOURNAL OF GEOMETRIC ANALYSIS, 2019, 29 (03) : 2644 - 2673
  • [9] INVERSE PROBLEMS FOR THE CONNECTION LAPLACIAN
    Kurylev, Yaroslav
    Oksanen, Lauri
    Paternain, Gabriel P.
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2018, 110 (03) : 457 - 494
  • [10] On the Laplacian spectra of graphs
    Zhang, XD
    ARS COMBINATORIA, 2004, 72 : 191 - 198