INVERSE PROBLEMS FOR THE CONNECTION LAPLACIAN

被引:26
|
作者
Kurylev, Yaroslav [1 ]
Oksanen, Lauri [1 ]
Paternain, Gabriel P. [2 ]
机构
[1] UCL, Dept Math, Gower St, London WC1E 6BT, England
[2] Univ Cambridge, Dept Pure Math & Math Stat, Cambridge CB3 0WB, England
基金
英国工程与自然科学研究理事会;
关键词
X-RAY TRANSFORM; WAVE-EQUATION; OPERATOR; THEOREM;
D O I
10.4310/jdg/1542423627
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We reconstruct a Riemannian manifold and a Hermitian vector bundle with compatible connection from the hyperbolic Dirichletto-Neumann operator associated with the wave equation of the connection Laplacian. The boundary data is local and the reconstruction is up to the natural gauge transformations of the problem. As a corollary we derive an elliptic analogue of the main result which solves a Calderon problem for connections on a cylinder.
引用
收藏
页码:457 / 494
页数:38
相关论文
共 50 条
  • [31] Manifold Embeddings by Heat Kernels of Connection Laplacian
    Lin C.-Y.
    La Matematica, 2023, 2 (1): : 136 - 155
  • [32] Solving Jigsaw Puzzles by the Graph Connection Laplacian
    Huroyan, Vahan
    Lerman, Gilad
    Wu, Hau-Tieng
    SIAM JOURNAL ON IMAGING SCIENCES, 2020, 13 (04): : 1717 - 1753
  • [33] How can the meromorphic approximation help to solve some 2D inverse problems for the Laplacian?
    Baratchart, L
    Leblond, J
    Mandréa, F
    Saff, EB
    INVERSE PROBLEMS, 1999, 15 (01) : 79 - 90
  • [35] Inverse feasibility problems of the inverse maximum flow problems
    Deaconu, Adrian
    Ciurea, Eleonor
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2013, 38 (02): : 199 - 209
  • [36] Inverse feasibility problems of the inverse maximum flow problems
    Deaconu A.
    Ciurea E.
    Sadhana, 2013, 38 (2) : 199 - 209
  • [37] Adaptively weighted discrete Laplacian for inverse rendering
    Hyeonjang An
    Wonjun Lee
    Bochang Moon
    The Visual Computer, 2023, 39 : 3211 - 3220
  • [38] Gelfand's inverse problem for the graph Laplacian
    Blasten, Emilia
    Isozaki, Hiroshi
    Lassas, Matti
    Lu, Jinpeng
    JOURNAL OF SPECTRAL THEORY, 2023, 13 (01) : 1 - 45
  • [39] Incremental Computation of Pseudo-Inverse of Laplacian
    Ranjan, Gyan
    Zhang, Zhi-Li
    Boley, Daniel
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS (COCOA 2014), 2014, 8881 : 729 - 749
  • [40] On boundary value problems for the φ-Laplacian
    Lepin, L. A.
    DIFFERENTIAL EQUATIONS, 2014, 50 (07) : 981 - 985