Effect of synthetic routes on the rate performance of Li-rich layered Li1.2Mn0.56Ni0.12Co0.12O2

被引:64
|
作者
Fu, Fang [1 ]
Wang, Qi [1 ]
Deng, Ya-Ping [2 ]
Shen, Chong-Heng [1 ]
Peng, Xin-Xing [1 ]
Huang, Ling [1 ]
Sun, Shi-Gang [1 ,2 ]
机构
[1] Xiamen Univ, Dept Chem, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Sch Energy Res, Xiamen 361005, Peoples R China
关键词
LITHIUM-ION BATTERIES; IN-SITU XRD; CATHODE MATERIALS; ELECTROCHEMICAL PERFORMANCE; HIGH-CAPACITY; FACILE SYNTHESIS; SOLVOTHERMAL SYNTHESIS; HYDROTHERMAL SYNTHESIS; STRUCTURAL-CHANGES; STORAGE MATERIAL;
D O I
10.1039/c4ta06552b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Different morphologies and compositions of Li-rich layered Li1.2Mn0.56Ni0.12Co0.12O2 (LMNCO) materials are successfully synthesized by solvothermal and coprecipitation methods. The samples synthesized by the solvothermal method possess a 3D porous hierarchical microstructure and designed chemical components, while those prepared through the coprecipitation method present partially agglomerated nanoplates and Mn-deficiency. When used as a cathode for lithium ion batteries (LIBs), the LMNCO synthesized by the solvothermal method exhibits superior performances to that prepared by the coprecipitation method, especially in terms of discharge capacity and rate capability: it delivers a discharge capacity of 292.3 mA h g(-1) at 0.2 C and 131.1 mA h g(-1) even at a rate as high as 10 C. The excellent electrochemical performances of the LMNCO synthesized by the solvothermal method are associated with a synergistic effect of the well-defined morphology and well-ordered structure with good homogeneity and designed stoichiometry. The results demonstrate that the facile solvothermal method may offer an attractive alternative approach for the preparation of Li-rich layered cathode materials with high rate capability.
引用
收藏
页码:5197 / 5203
页数:7
相关论文
共 50 条
  • [41] Surface modification of Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 oxide with Fe2O3 as cathode material for Li-ion batteries
    Zhai, Xinhua
    Zhang, Panpan
    Huang, Hui
    Zhou, Jianfeng
    Li, Xiaobo
    Chen, Buming
    He, Yapeng
    Guo, Zhongcheng
    SOLID STATE IONICS, 2021, 366
  • [42] Surface modification with oxygen vacancy in Li-rich layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 for lithium-ion batteries
    Bozhou Chen
    Bangchuan Zhao
    Jiafeng Zhou
    Zhitang Fang
    Yanan Huang
    Xuebin Zhu
    Yuping Sun
    Journal of Materials Science & Technology, 2019, 35 (06) : 994 - 1002
  • [43] Surface modification with oxygen vacancy in Li-rich layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 for lithium-ion batteries
    Chen, Bozhou
    Zhao, Bangchuan
    Zhou, Jiafeng
    Fang, Zhitang
    Huang, Yanan
    Zhu, Xuebin
    Sun, Yuping
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2019, 35 (06) : 994 - 1002
  • [44] Enabling improved electrochemical properties by uniform sodium doping for Li-rich Mn-based Li1.2Mn0.54Ni0.13Co0.13O2 layered oxide
    Chen, Haitao
    Li, Weizhou
    IONICS, 2022, 28 (05) : 2083 - 2097
  • [45] Enabling improved electrochemical properties by uniform sodium doping for Li-rich Mn-based Li1.2Mn0.54Ni0.13Co0.13O2 layered oxide
    Haitao Chen
    Weizhou Li
    Ionics, 2022, 28 : 2083 - 2097
  • [46] Synthesis and Electrochemical Performance of Li-rich Cathode Material Li[Li0.2Ni0.16Mn0.56Co0.06Al0.02]O2 in the Lithium-Ion Battery
    Zhang Hai-Lang
    Ye Yan-Yan
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2015, 10 (12): : 10718 - 10725
  • [47] Enhanced electrochemical performance of Li-rich layered oxide, Li1.2Mn0.54Co0.13Ni0.13O2, by surface modification derived from a MOF-assisted treatment
    Xie, Yuxiang
    Chen, Shengzhou
    Lin, Zhuoying
    Yang, Wei
    Zou, Hanbo
    Sun, Raymond Wai-Yin
    ELECTROCHEMISTRY COMMUNICATIONS, 2019, 99 : 65 - 70
  • [48] Inhibited voltage decay and enhanced electrochemical performance of the Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material by CeAlOδ surface coating modification
    Duan, Jidong
    Tang, Wei
    Wang, Rui
    Tang, Xin
    Li, Jing
    Tang, Manqin
    Li, Pengyu
    APPLIED SURFACE SCIENCE, 2020, 521
  • [49] N-Doped Graphene-Modified Li-Rich Layered Li1.2Mn0.6Ni0.2O2 Cathode for High-Performance Li-Ion Batteries
    Chen, Min
    Zhang, Gaige
    Wu, Binhong
    Liu, Mingzhu
    Chen, Jiakun
    Xiang, Wenjin
    Li, Weishan
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (04): : 4307 - 4317
  • [50] Direct observation of the partial formation of a framework structure for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2 upon the first charge and discharge
    Ito, Atsushi
    Shoda, Kaoru
    Sato, Yuichi
    Hatano, Masaharu
    Horie, Hideaki
    Ohsawa, Yasuhiko
    JOURNAL OF POWER SOURCES, 2011, 196 (10) : 4785 - 4790