Surface modification with oxygen vacancy in Li-rich layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 for lithium-ion batteries

被引:6
|
作者
Bozhou Chen [1 ,2 ]
Bangchuan Zhao [1 ]
Jiafeng Zhou [1 ,2 ]
Zhitang Fang [1 ,2 ]
Yanan Huang [1 ]
Xuebin Zhu [1 ]
Yuping Sun [1 ,3 ]
机构
[1] Key Laboratory of Materials Physics,Institute of Solid State Physics,Chinese Academy of Sciences
[2] University of Science and Technology of China
[3] High Magnetic Field Laboratory,Chinese Academy of Sciences
基金
中国国家自然科学基金;
关键词
Li-rich cathode oxide material; Oxygen vacancy; Solvothermal method; Electrochemical performance;
D O I
暂无
中图分类号
TQ131.11 []; TM912 [蓄电池];
学科分类号
0808 ; 0817 ;
摘要
A couple of layered Li-rich cathode materials LiMnNiCoOwithout any carbon modification are successfully synthesized by solvothermal and hydrothermal methods followed by a calcination process. The sample synthesized by the solvothermal method(S-NCM) possesses more homogenous microstructure, lower cation mixing degree and more oxygen vacancies on the surface, compared to the sample prepared by the hydrothermal method(H-NCM). The S-NCM sample exhibits much better cycling performance, higher discharge capacity and more excellent rate performance than H-NCM. At 0.2 C rate,the S-NCM sample delivers a much higher initial discharge capacity of 292.3 mAh gand the capacity maintains 235 m Ah gafter 150 cycles(80.4% retention), whereas the corresponding capacity values are only 269.2 and 108.5 m Ah g(40.3% retention) for the H-NCM sample. The S-NCM sample also shows the higher rate performance with discharge capacity of 118.3 mAh geven at a high rate of 10 C, superior to that(46.5 m Ah g) of the H-NCM sample. The superior electrochemical performance of the S-NCM sample can be ascribed to its well-ordered structure, much larger specific surface area and much more oxygen vacancies located on the surface.
引用
收藏
页码:994 / 1002
页数:9
相关论文
共 50 条
  • [1] Surface modification with oxygen vacancy in Li-rich layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 for lithium-ion batteries
    Chen, Bozhou
    Zhao, Bangchuan
    Zhou, Jiafeng
    Fang, Zhitang
    Huang, Yanan
    Zhu, Xuebin
    Sun, Yuping
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2019, 35 (06) : 994 - 1002
  • [2] Surface modification of Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 oxide with Fe2O3 as cathode material for Li-ion batteries
    Zhai, Xinhua
    Zhang, Panpan
    Huang, Hui
    Zhou, Jianfeng
    Li, Xiaobo
    Chen, Buming
    He, Yapeng
    Guo, Zhongcheng
    SOLID STATE IONICS, 2021, 366
  • [3] Surface modification of Li rich Li1.2Mn0.54Ni0.13Co0.13O2 cathode particles
    Wang, Zhe
    Cheng, Xu
    Qiang, Wenjiang
    Huang, Bingxin
    CERAMICS INTERNATIONAL, 2019, 45 (16) : 20016 - 20021
  • [4] Multiple Linkage Modification of Lithium-Rich Layered Oxide Li1.2Mn0.54Ni0.13Co0.13O2 for Lithium Ion Battery
    Zheng, Jun-chao
    Yang, Zhuo
    Wang, Peng-bo
    Tang, Lin-bo
    An, Chang-sheng
    He, Zhen-jiang
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (37) : 31324 - 31329
  • [5] Surface modification single crystal Li-rich Li1.2Mn0.54Ni0.13Co0.13O2 as high performance cathode materials for Li-ion batteries
    Jiao, Changmei
    Wang, Meng
    Huang, Bing
    Zhang, Mengxia
    Xu, Guodong
    Liu, Yuxin
    Zhao, Yunfeng
    Hu, Xuebu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 937
  • [6] Glucose-based surface modification of Li1.2Mn0.54Ni0.13Co0.13O2 as a cathode material for lithium-ion batteries
    Li, Ke
    Yuan, Zewei
    Yu, Haoran
    Xia, Kai
    Jiang, Guodong
    Xiong, Jian
    Yuan, Songdong
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2022, 17 (02):
  • [7] Controllable fabrication of Li-rich layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 microspheres for enhanced electrochemical performance
    Gao, Zhi
    Hu, Shengyue
    Pan, Xiaoliang
    Liu, Lijun
    Xie, Shikun
    Xie, Chengning
    Yuan, Huiling
    CRYSTENGCOMM, 2021, 23 (28) : 4975 - 4984
  • [8] Enhanced electrochemical performance of Li-rich manganese layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 by surface modification with Al2O3-ZrO2 for lithium-ion battery
    Luo, Huan
    Li, Hao
    Yuan, Shengxu
    Li, Jinchao
    Zhang, Yaping
    Duan, Hao
    Li, Jing
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2022, 33 (26) : 20518 - 20531
  • [9] Oxygen vacancies in SnO2 surface coating to enhance the activation of layered Li-Rich Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for Li-ion batteries
    Chen, Cheng
    Geng, Tianfeng
    Du, Chunyu
    Zuo, Pengjian
    Cheng, Xinqun
    Ma, Yulin
    Yin, Geping
    JOURNAL OF POWER SOURCES, 2016, 331 : 91 - 99
  • [10] Na Doping and CeO2 Nanoparticle Surface Modification Enhancing the Li-Rich Li1.2Mn0.54Ni0.13Co0.13O2 Cathode Material for a Lithium-Ion Battery
    Feng, Xiang-Yu
    Ran, Mao-Jin
    Yuan, Man-Man
    Wei, Mei-Tong
    Wu, Liang
    Hu, Zhi-Yi
    Chen, Li-Hua
    Li, Yu
    Su, Bao-Lian
    ACS APPLIED NANO MATERIALS, 2024, 7 (11) : 13173 - 13182