Effect of synthetic routes on the rate performance of Li-rich layered Li1.2Mn0.56Ni0.12Co0.12O2

被引:64
|
作者
Fu, Fang [1 ]
Wang, Qi [1 ]
Deng, Ya-Ping [2 ]
Shen, Chong-Heng [1 ]
Peng, Xin-Xing [1 ]
Huang, Ling [1 ]
Sun, Shi-Gang [1 ,2 ]
机构
[1] Xiamen Univ, Dept Chem, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Sch Energy Res, Xiamen 361005, Peoples R China
关键词
LITHIUM-ION BATTERIES; IN-SITU XRD; CATHODE MATERIALS; ELECTROCHEMICAL PERFORMANCE; HIGH-CAPACITY; FACILE SYNTHESIS; SOLVOTHERMAL SYNTHESIS; HYDROTHERMAL SYNTHESIS; STRUCTURAL-CHANGES; STORAGE MATERIAL;
D O I
10.1039/c4ta06552b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Different morphologies and compositions of Li-rich layered Li1.2Mn0.56Ni0.12Co0.12O2 (LMNCO) materials are successfully synthesized by solvothermal and coprecipitation methods. The samples synthesized by the solvothermal method possess a 3D porous hierarchical microstructure and designed chemical components, while those prepared through the coprecipitation method present partially agglomerated nanoplates and Mn-deficiency. When used as a cathode for lithium ion batteries (LIBs), the LMNCO synthesized by the solvothermal method exhibits superior performances to that prepared by the coprecipitation method, especially in terms of discharge capacity and rate capability: it delivers a discharge capacity of 292.3 mA h g(-1) at 0.2 C and 131.1 mA h g(-1) even at a rate as high as 10 C. The excellent electrochemical performances of the LMNCO synthesized by the solvothermal method are associated with a synergistic effect of the well-defined morphology and well-ordered structure with good homogeneity and designed stoichiometry. The results demonstrate that the facile solvothermal method may offer an attractive alternative approach for the preparation of Li-rich layered cathode materials with high rate capability.
引用
收藏
页码:5197 / 5203
页数:7
相关论文
共 50 条
  • [21] Electrochemical performance of the Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material influenced by Fe3+ doping
    Liang, Tianquan
    Zeng, Weitian
    Yang, Liu
    Liu, Siyun
    Huang, Youxia
    He, Huan
    Chen, Xiyong
    He, Aoping
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 910
  • [22] Preparation and electrochemical characterization of nanocrystalline Li[Li0.12Ni0.32Mn0.56]O2 pyrolyzed from polyacrylate salts
    Yu, LH
    Cao, YL
    Yang, HX
    Ai, XP
    Ren, YY
    MATERIALS CHEMISTRY AND PHYSICS, 2004, 88 (2-3) : 353 - 356
  • [23] Retarded phase transition by fluorine doping in Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material
    Li, L.
    Song, B. H.
    Chang, Y. L.
    Xia, H.
    Yang, J. R.
    Lee, K. S.
    Lu, L.
    JOURNAL OF POWER SOURCES, 2015, 283 : 162 - 170
  • [24] In situ X-ray absorption spectroscopic study of Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2
    Ito, Atsushi
    Sato, Yuichi
    Sanada, Takashi
    Hatano, Masaharu
    Horie, Hideaki
    Ohsawa, Yasuhiko
    JOURNAL OF POWER SOURCES, 2011, 196 (16) : 6828 - 6834
  • [25] Improving the electrochemical performance of Li-rich Li1.2Ni0.13Co0.13Mn0.54O2 cathode material by LiF coating
    Zhuolin Du
    Wenjie Peng
    Zhixing Wang
    Huajun Guo
    Qiyang Hu
    Xinhai Li
    Ionics, 2018, 24 : 3717 - 3724
  • [26] Improving the electrochemical performance of Li-rich Li1.2Ni0.13Co0.13Mn0.54O2 cathode material by LiF coating
    Du, Zhuolin
    Peng, Wenjie
    Wang, Zhixing
    Guo, Huajun
    Hu, Qiyang
    Li, Xinhai
    IONICS, 2018, 24 (12) : 3717 - 3724
  • [27] Improved rate performance of Li1.2Mn0.54Co0.13Ni0.13O2 Li-rich cathode by LaPO4 coating and Lanthanum doping
    Zhou, Lei
    Zheng, Zihao
    Xia, Wenchao
    Sun, Jitie
    Bei, Fengli
    IONICS, 2023, 29 (04) : 1311 - 1322
  • [28] Improved rate performance of Li1.2Mn0.54Co0.13Ni0.13O2 Li-rich cathode by LaPO4 coating and Lanthanum doping
    Lei Zhou
    Zihao Zheng
    Wenchao Xia
    Jitie Sun
    Fengli Bei
    Ionics, 2023, 29 : 1311 - 1322
  • [29] Improving the electrochemical performance of Li-rich Li1.2Ni0.2Mn0.6O2 by using Ni-Mn oxide surface modification
    Ding, Xiang
    Xiao, Li-Na
    Li, Yi-Xuan
    Tang, Zhong-Feng
    Wan, Jia-Wei
    Wen, Zhao-Yin
    Chen, Chun-Hua
    JOURNAL OF POWER SOURCES, 2018, 390 : 13 - 19
  • [30] Oxygen defect engineering for the Li-rich cathode material Li1.2Ni0.13Co0.13Mn0.54O2-δ
    Nakamura, Takashi
    Ohta, Kento
    Hou, Xueyan
    Kimura, Yuta
    Tsuruta, Kazuki
    Tamenori, Yusuke
    Aso, Ryotaro
    Yoshida, Hideto
    Amezawa, Koji
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (06) : 3657 - 3667