Combining Design and Selection to Create Novel Protein-Peptide Interactions

被引:0
|
作者
Speltz, E. B. [1 ]
Sawyer, N. [1 ,2 ]
Regan, L. [1 ]
机构
[1] Yale Univ, Dept Chem, New Haven, CT 06520 USA
[2] NYU, Dept Chem, 100 Washington Sq East, New York, NY 10003 USA
来源
关键词
BIMOLECULAR FLUORESCENCE COMPLEMENTATION; ARMADILLO REPEAT PROTEINS; INTERACTIONS IN-VIVO; SACCHAROMYCES-CEREVISIAE; MODULAR RECOGNITION; ESCHERICHIA-COLI; BINDING-PROTEINS; HIGH-AFFINITY; YEAST; GENERATION;
D O I
10.1016/bs.mie.2016.05.008
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The ability to design new protein-protein interactions (PPIs) has many applications in biotechnology and medicine. The goal of designed PPIs is to achieve both high affinity and specificity for the target protein. A great challenge in protein design is to identify such proteins from an enormous number of potential sequences. Many computational and experimental methods have been developed to contend with this challenge. Here we describe one particularly powerful approach-semirational design-that combines design and selection. This approach has been applied to generate new PPIs for many applications, including novel affinity reagents for protein detection/purification and bioorthogonal modules for synthetic biology (Jackrel, Valverde, & Regan, 2009; Sawyer et al., 2014; Speltz, Brown, Hajare, Schlieker, & Regan, 2015; Speltz, Nathan, & Regan, 2015).
引用
收藏
页码:203 / 222
页数:20
相关论文
共 50 条
  • [41] Intrinsic Dynamics of Protein-Peptide Unbinding
    Jankovic, Brankica
    Bozovic, Olga
    Hamm, Peter
    BIOCHEMISTRY, 2021, 60 (22) : 1755 - 1763
  • [42] In Silico Peptide Ligation: Iterative Residue Docking and Linking as a New Approach to Predict Protein-Peptide Interactions
    Diharce, Julien
    Cueto, Mickael
    Beltramo, Massimiliano
    Aucagne, Vincent
    Bonnet, Pascal
    MOLECULES, 2019, 24 (07)
  • [43] Specific Rosetta-based protein-peptide prediction protocol allows the design of novel cholinesterase inhibitor peptides
    Sanchis, Ivan
    Aimaretti, Florencia
    Lupotti, Matias
    Rietmann, Alvaro
    Dias, Jose
    Brazzolotto, Xavier
    Spinelli, Roque
    Siano, Alvaro S.
    BIOORGANIC CHEMISTRY, 2025, 156
  • [44] Combining NMR experiments with coarse-grained proteins docking to characterize protein-peptide complexes
    Savarin, Philippe
    Basdevant, Nathalie
    Ha-Duong, Tap
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [45] Design of Protein-Peptide Interaction Modules for Assembling Supramolecular Structures in Vivo and in Vitro
    Speltz, Elizabeth B.
    Nathan, Aparna
    Regan, Lynne
    ACS CHEMICAL BIOLOGY, 2015, 10 (09) : 2108 - 2115
  • [46] Prediction of Protein-Peptide Interactions: Application of the XPairIt API to anthrax lethal factor and substrates
    Hurley, Margaret M.
    Sellers, Michael S.
    SMART BIOMEDICAL AND PHYSIOLOGICAL SENSOR TECHNOLOGY X, 2013, 8719
  • [47] Blind Prediction of Protein-Peptide Complex Structures: A Novel Method and a Web Server
    Xu, Xianjin
    Yan, Chengfei
    Zou, Xiaoqin
    BIOPHYSICAL JOURNAL, 2018, 114 (03) : 55A - 55A
  • [48] Predicting protein-ligand and protein-peptide interfaces
    Paola Bertolazzi
    Concettina Guerra
    Giampaolo Liuzzi
    The European Physical Journal Plus, 129
  • [49] Predicting protein-ligand and protein-peptide interfaces
    Bertolazzi, Paola
    Guerra, Concettina
    Liuzzi, Giampaolo
    EUROPEAN PHYSICAL JOURNAL PLUS, 2014, 129 (06):
  • [50] Predicting Protein-Peptide Interactions: Benchmarking Deep Learning Techniques and a Comparison with Focused Docking
    Shanker, Sudhanshu
    Sanner, Michel F.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (10) : 3158 - 3170