Combining Design and Selection to Create Novel Protein-Peptide Interactions

被引:0
|
作者
Speltz, E. B. [1 ]
Sawyer, N. [1 ,2 ]
Regan, L. [1 ]
机构
[1] Yale Univ, Dept Chem, New Haven, CT 06520 USA
[2] NYU, Dept Chem, 100 Washington Sq East, New York, NY 10003 USA
来源
关键词
BIMOLECULAR FLUORESCENCE COMPLEMENTATION; ARMADILLO REPEAT PROTEINS; INTERACTIONS IN-VIVO; SACCHAROMYCES-CEREVISIAE; MODULAR RECOGNITION; ESCHERICHIA-COLI; BINDING-PROTEINS; HIGH-AFFINITY; YEAST; GENERATION;
D O I
10.1016/bs.mie.2016.05.008
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The ability to design new protein-protein interactions (PPIs) has many applications in biotechnology and medicine. The goal of designed PPIs is to achieve both high affinity and specificity for the target protein. A great challenge in protein design is to identify such proteins from an enormous number of potential sequences. Many computational and experimental methods have been developed to contend with this challenge. Here we describe one particularly powerful approach-semirational design-that combines design and selection. This approach has been applied to generate new PPIs for many applications, including novel affinity reagents for protein detection/purification and bioorthogonal modules for synthetic biology (Jackrel, Valverde, & Regan, 2009; Sawyer et al., 2014; Speltz, Brown, Hajare, Schlieker, & Regan, 2015; Speltz, Nathan, & Regan, 2015).
引用
收藏
页码:203 / 222
页数:20
相关论文
共 50 条
  • [31] GalaxyPepDock: a web server to predict protein-peptide interactions based on interaction similarity
    Lee, H.
    Heo, L.
    Seok, C.
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2015, 44 : S148 - S148
  • [32] Predicting protein-peptide interactions via a network-based motif sampler
    Reiss, David J.
    Schwikowski, Benno
    BIOINFORMATICS, 2004, 20 : 274 - 282
  • [33] Elucidating specificity determinants in Bcl-2 family protein-peptide interactions
    Keating, Amy E.
    Dutta, Sanjib
    Gulla, Stefano
    Chen, T. C. Scott
    Fire, Emiko
    Grant, Robert A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240
  • [34] Biophysical prediction of protein-peptide interactions and signaling networks using machine learning
    Cunningham, Joseph M.
    Koytiger, Grigoriy
    Sorger, Peter K.
    AlQuraishi, Mohammed
    NATURE METHODS, 2020, 17 (02) : 175 - +
  • [35] Web server tools for modeling of protein structure, flexibility, aggregation properties and protein-peptide interactions
    Blaszczyk, Maciej
    Jamroz, Michal
    Kurcinski, Mateusz
    Szczasiuk, Agata
    Kolinski, Andrzej
    Kmiecik, Sebastian
    PROTEIN SCIENCE, 2015, 24 : 247 - 248
  • [36] Molecular docking: The role of noncovalent interactions in the formation of protein-nucleotide and protein-peptide complexes
    T. V. Pyrkov
    I. V. Ozerov
    E. D. Balitskaya
    R. G. Efremov
    Russian Journal of Bioorganic Chemistry, 2010, 36 : 446 - 455
  • [37] Combination of Experimental and Bioinformatic Approaches for Identification of Immunologically Relevant Protein-Peptide Interactions
    Debeljak, Jerneja
    Korosec, Peter
    Selb, Julij
    Rijavec, Matija
    Kosnik, Mitja
    Lunder, Mojca
    BIOMOLECULES, 2023, 13 (02)
  • [38] Molecular docking: The role of noncovalent interactions in the formation of protein-nucleotide and protein-peptide complexes
    Pyrkov, T. V.
    Ozerov, I. V.
    Balitskaya, E. D.
    Efremov, R. G.
    RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY, 2010, 36 (04) : 446 - 455
  • [39] Computational Prediction of Protein-Peptide Binding
    Antes, Iris
    Glaser, Manuel
    Patronov, Atanas
    BIOPHYSICAL JOURNAL, 2014, 106 (02) : 647A - 647A
  • [40] Protein-peptide docking: opportunities and challenges
    Ciemny, Maciej
    Kurcinski, Mateusz
    Kamel, Karol
    Kolinski, Andrzej
    Alam, Nawsad
    Schueler-Furman, Ora
    Kmiecik, Sebastian
    DRUG DISCOVERY TODAY, 2018, 23 (08) : 1530 - 1537