Combining Design and Selection to Create Novel Protein-Peptide Interactions

被引:0
|
作者
Speltz, E. B. [1 ]
Sawyer, N. [1 ,2 ]
Regan, L. [1 ]
机构
[1] Yale Univ, Dept Chem, New Haven, CT 06520 USA
[2] NYU, Dept Chem, 100 Washington Sq East, New York, NY 10003 USA
来源
关键词
BIMOLECULAR FLUORESCENCE COMPLEMENTATION; ARMADILLO REPEAT PROTEINS; INTERACTIONS IN-VIVO; SACCHAROMYCES-CEREVISIAE; MODULAR RECOGNITION; ESCHERICHIA-COLI; BINDING-PROTEINS; HIGH-AFFINITY; YEAST; GENERATION;
D O I
10.1016/bs.mie.2016.05.008
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The ability to design new protein-protein interactions (PPIs) has many applications in biotechnology and medicine. The goal of designed PPIs is to achieve both high affinity and specificity for the target protein. A great challenge in protein design is to identify such proteins from an enormous number of potential sequences. Many computational and experimental methods have been developed to contend with this challenge. Here we describe one particularly powerful approach-semirational design-that combines design and selection. This approach has been applied to generate new PPIs for many applications, including novel affinity reagents for protein detection/purification and bioorthogonal modules for synthetic biology (Jackrel, Valverde, & Regan, 2009; Sawyer et al., 2014; Speltz, Brown, Hajare, Schlieker, & Regan, 2015; Speltz, Nathan, & Regan, 2015).
引用
收藏
页码:203 / 222
页数:20
相关论文
共 50 条
  • [21] Dye-pair reporter systems for protein-peptide molecular interactions
    Geoghegan, KF
    Rosner, PJ
    Hoth, LR
    BIOCONJUGATE CHEMISTRY, 2000, 11 (01) : 71 - 77
  • [22] PepBind: A Comprehensive Database and Computational Tool for Analysis of Protein-peptide Interactions
    Arindam Atanu Das
    Om Prakash Sharma
    Muthuvel Suresh Kumar
    Ramadas Krishna
    Premendu P. Mathur
    Genomics, Proteomics & Bioinformatics, 2013, (04) : 241 - 246
  • [23] A Unified Conformational Selection and Induced Fit Approach to Protein-Peptide Docking
    Trellet, Mikael
    Melquiond, Adrien S. J.
    Bonvin, Alexandre M. J. J.
    PLOS ONE, 2013, 8 (03):
  • [24] NMR analysis of protein-peptide interactions for in silico affinity maturation of chromatographic peptide ligands
    Goodwine, Chaz
    Chandra, Divya
    Timmick, Steve
    Vecchiarello, Nicholas
    Cramer, Steven
    Karande, Pankaj
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [25] Photocontrolling Protein-Peptide Interactions: From Minimal Perturbation to Complete Unbinding
    Jankovic, Brankica
    Gulzar, Adnan
    Zanobini, Claudio
    Bozovic, Olga
    Wolf, Steffen
    Stock, Gerhard
    Hamm, Peter
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (27) : 10702 - 10710
  • [26] Interaction of Nanomaterials with Protein-Peptide
    Hazarika, Zaved
    Saikia, Surovi
    Jha, Anupam Nath
    CURRENT PROTEIN & PEPTIDE SCIENCE, 2022, 23 (08) : 548 - 562
  • [27] NMR spectroscopic and molecular modeling studies of protein-carbohydrate and protein-peptide interactions
    Johnson, MA
    Pinto, BM
    CARBOHYDRATE RESEARCH, 2004, 339 (05) : 907 - 928
  • [28] Direct molecular fishing in molecular partners investigation in protein-protein and protein-peptide interactions
    Ivanov, A. S.
    Ershov, P. V.
    Molnar, A. A.
    Mezentsev, Yu. V.
    Kaluzhskiy, L. A.
    Yablokov, E. O.
    Florinskaya, A. V.
    Gnedenko, O. V.
    Medvedev, A. E.
    Kozin, S. A.
    Mitkevich, V. A.
    Makarov, A. A.
    Gilep, A. A.
    Luschik, A. Ya.
    Gaidukevich, I. V.
    Usanov, S. A.
    RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY, 2016, 42 (01) : 14 - 21
  • [29] PROTEIN-PEPTIDE INTERACTIONS AS PROBED BY TRYPTOPHAN FLUORESCENCE - SERUM ALBUMINS AND ENKEPHALIN METABOLITES
    JAIN, S
    KUMAR, V
    KALONIA, DS
    PHARMACEUTICAL RESEARCH, 1992, 9 (08) : 990 - 992
  • [30] Machine Learning in Quantitative Protein-peptide Affinity Prediction: Implications for Therapeutic Peptide Design
    Li, Zhongyan
    Miao, Qingqing
    Yan, Fugang
    Meng, Yang
    Zhou, Pcng
    CURRENT DRUG METABOLISM, 2019, 20 (03) : 170 - 176