Machine-Learning for Classification of Naval Targets

被引:1
|
作者
Sajjan, Sangeetha S. [1 ]
Bhumika, C. S. [1 ]
Choudhury, Balamati [1 ]
Nair, Raveendranath U. [1 ]
机构
[1] CSIR Natl Aerosp Labs, Ctr Electromagnet, Bengaluru, India
关键词
ANN; CATIA models; Classification; Naval targets; RCS; SHIP CLASSIFICATION;
D O I
10.1109/imarc45935.2019.9118614
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Naval target classification is one of the prominent area of research in defence to safeguard ships and to provide guidelines for shipping channels. This work mainly explains the machine learning approach for naval target classification by examining the radar kinematics. The Artificial Neural Network (ANN) model is developed to classify various ship models. The Radar Cross-Section (RCS) data has been used for identification and classification of the naval target. The RCS database for ships are generated by simulating the open domain CATIA models.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Machine-learning the classification of spacetimes
    He, Yang-Hui
    Ipina, Juan Manuel Perez
    [J]. PHYSICS LETTERS B, 2022, 832
  • [2] A machine-learning benchmark for facies classification
    Alaudah, Yazeed
    Michalowicz, Patrycja
    Alfarraj, Motaz
    Alregib, Ghassan
    [J]. INTERPRETATION-A JOURNAL OF SUBSURFACE CHARACTERIZATION, 2019, 7 (03): : SE175 - SE187
  • [3] Machine-learning phenotypic classification of bicuspid aortopathy
    Wojnarski, Charles M.
    Roselli, Eric E.
    Idrees, Jay J.
    Zhu, Yuanjia
    Carnes, Theresa A.
    Lowry, Ashley M.
    Collier, Patrick H.
    Griffin, Brian
    Ehrlinger, John
    Blackstone, Eugene H.
    Svensson, Lars G.
    Lytle, Bruce W.
    [J]. JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2018, 155 (02): : 461 - +
  • [4] Machine-learning based classification of speech and music
    M. Kashif Saeed Khan
    Wasfi G. Al-Khatib
    [J]. Multimedia Systems, 2006, 12 : 55 - 67
  • [5] Machine-Learning Classification of Pulse Waveform Quality
    Ouyoung, Te
    Weng, Wan-Ling
    Hu, Ting-Yu
    Lee, Chia-Chien
    Wu, Li-Wei
    Hsiu, Hsin
    [J]. SENSORS, 2022, 22 (22)
  • [6] Machine-learning based classification of speech and music
    Khan, M. Kashif Saeed
    Al-Khatib, Wasfi G.
    [J]. MULTIMEDIA SYSTEMS, 2006, 12 (01) : 55 - 67
  • [7] MEMS Accelerometers Classification Using Machine-Learning Methods
    Nevlydov, Igor
    Ponomaryova, Ganna
    Miliutina, Svitlana
    Bortnikova, Viktoriia
    [J]. 2017 XIIITH INTERNATIONAL CONFERENCE ON PERSPECTIVE TECHNOLOGIES AND METHODS IN MEMS DESIGN (MEMSTECH), 2017, : 51 - 55
  • [8] Machine-learning image recognition enhances rock classification
    Al-Farisi, Omar
    Zhang, Hongtao
    Raza, Aikifa
    [J]. JPT, Journal of Petroleum Technology, 2020, 72 (10): : 63 - 64
  • [9] Identification of human drug targets using machine-learning algorithms
    Kumari, Priyanka
    Nath, Abhigyan
    Chaube, Radha
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2015, 56 : 175 - 181
  • [10] Comparison of Machine-Learning Classification Models for Glaucoma Management
    An, Guangzhou
    Omodaka, Kazuko
    Tsuda, Satoru
    Shiga, Yukihiro
    Takada, Naoko
    Kikawa, Tsutomu
    Nakazawa, Toru
    Yokota, Hideo
    Akiba, Masahiro
    [J]. JOURNAL OF HEALTHCARE ENGINEERING, 2018, 2018