Machine-learning the classification of spacetimes

被引:1
|
作者
He, Yang-Hui [1 ,2 ,3 ,4 ]
Ipina, Juan Manuel Perez [5 ]
机构
[1] London Inst, Royal Inst GB, 21 Albemarle St, London W1S 4BS, England
[2] Univ Oxford, Merton Coll, Oxford, England
[3] Univ London, Dept Math, London EC1V0HB, England
[4] Nankai Univ, Sch Phys, Tianjin 300071, Peoples R China
[5] Univ Oxford, Math Inst, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England
关键词
ALGORITHM;
D O I
10.1016/j.physletb.2022.137213
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
On the long-established classification problems in general relativity we take a novel perspective by adopting fruitful techniques from machine learning and modern data-science. In particular, we model Petrov's classification of spacetimes, and show that a feed-forward neural network can achieve high degree of success. We also show how data visualization techniques with dimensionality reduction can help analyze the underlying patterns in the structure of the different types of spacetimes. (c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).
引用
收藏
页数:5
相关论文
共 50 条
  • [1] A machine-learning benchmark for facies classification
    Alaudah, Yazeed
    Michalowicz, Patrycja
    Alfarraj, Motaz
    Alregib, Ghassan
    [J]. INTERPRETATION-A JOURNAL OF SUBSURFACE CHARACTERIZATION, 2019, 7 (03): : SE175 - SE187
  • [2] Machine-Learning for Classification of Naval Targets
    Sajjan, Sangeetha S.
    Bhumika, C. S.
    Choudhury, Balamati
    Nair, Raveendranath U.
    [J]. 2019 IEEE MTT-S INTERNATIONAL MICROWAVE AND RF CONFERENCE (IMARC), 2019,
  • [3] Machine-learning phenotypic classification of bicuspid aortopathy
    Wojnarski, Charles M.
    Roselli, Eric E.
    Idrees, Jay J.
    Zhu, Yuanjia
    Carnes, Theresa A.
    Lowry, Ashley M.
    Collier, Patrick H.
    Griffin, Brian
    Ehrlinger, John
    Blackstone, Eugene H.
    Svensson, Lars G.
    Lytle, Bruce W.
    [J]. JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2018, 155 (02): : 461 - +
  • [4] Machine-learning based classification of speech and music
    M. Kashif Saeed Khan
    Wasfi G. Al-Khatib
    [J]. Multimedia Systems, 2006, 12 : 55 - 67
  • [5] Machine-Learning Classification of Pulse Waveform Quality
    Ouyoung, Te
    Weng, Wan-Ling
    Hu, Ting-Yu
    Lee, Chia-Chien
    Wu, Li-Wei
    Hsiu, Hsin
    [J]. SENSORS, 2022, 22 (22)
  • [6] Machine-learning based classification of speech and music
    Khan, M. Kashif Saeed
    Al-Khatib, Wasfi G.
    [J]. MULTIMEDIA SYSTEMS, 2006, 12 (01) : 55 - 67
  • [7] MEMS Accelerometers Classification Using Machine-Learning Methods
    Nevlydov, Igor
    Ponomaryova, Ganna
    Miliutina, Svitlana
    Bortnikova, Viktoriia
    [J]. 2017 XIIITH INTERNATIONAL CONFERENCE ON PERSPECTIVE TECHNOLOGIES AND METHODS IN MEMS DESIGN (MEMSTECH), 2017, : 51 - 55
  • [8] Comparison of Machine-Learning Classification Models for Glaucoma Management
    An, Guangzhou
    Omodaka, Kazuko
    Tsuda, Satoru
    Shiga, Yukihiro
    Takada, Naoko
    Kikawa, Tsutomu
    Nakazawa, Toru
    Yokota, Hideo
    Akiba, Masahiro
    [J]. JOURNAL OF HEALTHCARE ENGINEERING, 2018, 2018
  • [9] Implementation of machine-learning classification in remote sensing: an applied review
    Maxwell, Aaron E.
    Warner, Timothy A.
    Fang, Fang
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2018, 39 (09) : 2784 - 2817
  • [10] Enhancing Machine-Learning Methods for Sentiment Classification of Web Data
    Wang, Zhaoxia
    Tong, Victor Joo Chuan
    Chin, Hoong Chor
    [J]. INFORMATION RETRIEVAL TECHNOLOGY, AIRS 2014, 2014, 8870 : 394 - 405