Machine-Learning for Classification of Naval Targets

被引:1
|
作者
Sajjan, Sangeetha S. [1 ]
Bhumika, C. S. [1 ]
Choudhury, Balamati [1 ]
Nair, Raveendranath U. [1 ]
机构
[1] CSIR Natl Aerosp Labs, Ctr Electromagnet, Bengaluru, India
关键词
ANN; CATIA models; Classification; Naval targets; RCS; SHIP CLASSIFICATION;
D O I
10.1109/imarc45935.2019.9118614
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Naval target classification is one of the prominent area of research in defence to safeguard ships and to provide guidelines for shipping channels. This work mainly explains the machine learning approach for naval target classification by examining the radar kinematics. The Artificial Neural Network (ANN) model is developed to classify various ship models. The Radar Cross-Section (RCS) data has been used for identification and classification of the naval target. The RCS database for ships are generated by simulating the open domain CATIA models.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Countering Machine-Learning Classification of Applications by Equalizing Network Traffic Statistics
    Fathi-Kazerooni, Sina
    Rojas-Cessa, Roberto
    [J]. IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2021, 8 (04): : 3392 - 3403
  • [42] Identifying Children With Clinical Language Disorder: An Application of Machine-Learning Classification
    Justice, Laura M.
    Ahn, Woo-Young
    Logan, Jessica A. R.
    [J]. JOURNAL OF LEARNING DISABILITIES, 2019, 52 (05) : 351 - 365
  • [43] Trajectory classification based on machine-learning techniques over tracking data
    Garcia, Jesus
    Perez Concha, Oscar
    Molina, Jose M.
    de Miguel, Gonzalo
    [J]. 2006 9th International Conference on Information Fusion, Vols 1-4, 2006, : 491 - 498
  • [44] HergSPred: Accurate Classification of hERG Blockers/Nonblockers with Machine-Learning Models
    Zhang, Xudong
    Mao, Jun
    Wei, Min
    Qi, Yifei
    Zhang, John Z. H.
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2022, 62 (08) : 1830 - 1839
  • [45] Optimizing exoplanet atmosphere retrieval using unsupervised machine-learning classification
    Hayes, J. J. C.
    Kerins, E.
    Awiphan, S.
    McDonald, I
    Morgan, J. S.
    Chuanraksasat, P.
    Komonjinda, S.
    Sanguansak, N.
    Kittara, P.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 494 (03) : 4492 - 4508
  • [46] Machine-Learning Classification of a Number of Contaminant Sources in an Urban Water Network
    Lucin, Ivana
    Grbcic, Luka
    Carija, Zoran
    Kranjcevic, Lado
    [J]. SENSORS, 2021, 21 (01) : 1 - 15
  • [47] Semi-supervised machine-learning classification of materials synthesis procedures
    Huo, Haoyan
    Rong, Ziqin
    Kononova, Olga
    Sun, Wenhao
    Botari, Tiago
    He, Tanjin
    Tshitoyan, Vahe
    Ceder, Gerbrand
    [J]. NPJ COMPUTATIONAL MATERIALS, 2019, 5 (1)
  • [48] Music Genre Classification: A Review of Deep-Learning and Traditional Machine-Learning Approaches
    Ndou, Ndiatenda
    Ajoodha, Ritesh
    Jadhav, Ashwini
    [J]. 2021 IEEE INTERNATIONAL IOT, ELECTRONICS AND MECHATRONICS CONFERENCE (IEMTRONICS), 2021, : 581 - 586
  • [49] Machine-learning with Cellular Automata
    Povalej, P
    Kokol, P
    Druzovec, TW
    Stiglic, B
    [J]. ADVANCES IN INTELLIGENT DATA ANALYSIS VI, PROCEEDINGS, 2005, 3646 : 305 - 315
  • [50] Certified Machine-Learning Models
    Damiani, Ernesto
    Ardagna, Claudio A.
    [J]. SOFSEM 2020: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2020, 12011 : 3 - 15