Machine-Learning for Classification of Naval Targets

被引:1
|
作者
Sajjan, Sangeetha S. [1 ]
Bhumika, C. S. [1 ]
Choudhury, Balamati [1 ]
Nair, Raveendranath U. [1 ]
机构
[1] CSIR Natl Aerosp Labs, Ctr Electromagnet, Bengaluru, India
关键词
ANN; CATIA models; Classification; Naval targets; RCS; SHIP CLASSIFICATION;
D O I
10.1109/imarc45935.2019.9118614
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Naval target classification is one of the prominent area of research in defence to safeguard ships and to provide guidelines for shipping channels. This work mainly explains the machine learning approach for naval target classification by examining the radar kinematics. The Artificial Neural Network (ANN) model is developed to classify various ship models. The Radar Cross-Section (RCS) data has been used for identification and classification of the naval target. The RCS database for ships are generated by simulating the open domain CATIA models.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Classification in conservation biology: A comparison of five machine-learning methods
    Kampichler, Christian
    Wieland, Ralf
    Calme, Sophie
    Weissenberger, Holger
    Arriaga-Weiss, Stefan
    [J]. ECOLOGICAL INFORMATICS, 2010, 5 (06) : 441 - 450
  • [22] Machine-learning classification of two-dimensional vortex configurations
    Sharma, Rama
    Simula, Tapio P.
    [J]. PHYSICAL REVIEW A, 2022, 105 (03)
  • [23] Ship classification based on trajectory data with machine-learning methods
    Kraus, Paul
    Mohrdieck, Camilla
    Schwenker, Friedhelm
    [J]. 2018 19TH INTERNATIONAL RADAR SYMPOSIUM (IRS), 2018,
  • [24] Crowdsourced validation of a machine-learning classification system for autism and ADHD
    M Duda
    N Haber
    J Daniels
    D P Wall
    [J]. Translational Psychiatry, 2017, 7 : e1133 - e1133
  • [25] Photometric classification of emission line galaxies with machine-learning methods
    Cavuoti, Stefano
    Brescia, Massimo
    D'Abrusco, Raffaele
    Longo, Giuseppe
    Paolillo, Maurizio
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 437 (01) : 968 - 975
  • [26] Rock-type classification: A (critical) machine-learning perspective
    Ribeiro Mendes, Pedro
    Salavati, Soroor
    Linares, Oscar
    Moreira Gonçalves, Maiara
    Ferreira Zampieri, Marcelo
    de Sousa Ferreira, Vitor Hugo
    Castro, Manuel
    de Oliveira Werneck, Rafael
    Moura, Renato
    Morais, Elayne
    Esmin, Ahmed
    Lusquino, Leopoldo
    Schiozer, Denis José
    Ferreira, Alexandre
    Davólio, Alessandra
    Rocha, Anderson
    [J]. Computers and Geosciences, 2024, 193
  • [27] Automatic Classification of Galaxy Morphology: A Rotationally-invariant Supervised Machine-learning Method Based on the Unsupervised Machine-learning Data Set
    Fang, GuanWen
    Ba, Shuo
    Gu, Yizhou
    Lin, Zesen
    Hou, Yuejie
    Qin, Chenxin
    Zhou, Chichun
    Xu, Jun
    Dai, Yao
    Song, Jie
    Kong, Xu
    [J]. ASTRONOMICAL JOURNAL, 2023, 165 (02):
  • [28] Machine-learning in astronomy
    Hobson, Michael
    Graff, Philip
    Feroz, Farhan
    Lasenby, Anthony
    [J]. STATISTICAL CHALLENGES IN 21ST CENTURY COSMOLOGY, 2015, 10 (306): : 279 - 287
  • [29] Machine-learning design
    Changjun Zhang
    [J]. Nature Energy, 2018, 3 : 535 - 535
  • [30] Machine-learning design
    Zhang, Changjun
    [J]. NATURE ENERGY, 2018, 3 (07): : 535 - 535