MULTIPLE SOLITARY WAVE SOLUTIONS OF NONLINEAR SCHRODINGER SYSTEMS

被引:0
|
作者
Tian, Rushun [1 ]
Wang, Zhi-Qiang [1 ]
机构
[1] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
关键词
Nonlinear Schrodinger system; Nehari manifold; a Z(N)-index theory; BOUND-STATES; GROUND-STATES; EQUATIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the N-coupled nonlinear elliptic system (P) {-Delta U-j + U-j = mu U-j(3) + beta U-j Sigma(k not equal j) U-k(2) in Omega, U-j > 0 in Omega, U-j = 0 on partial derivative Omega, j = 1, ... , N. where Omega is a smooth and bounded (or unbounded if Omega is radially symmetric) domain in R-n, n <= 3. By using a Z(N) index theory, we prove the existence of multiple solutions of (P) and show the dependence of multiplicity results on the coupling constant beta.
引用
下载
收藏
页码:203 / 223
页数:21
相关论文
共 50 条
  • [41] Cnoidal and solitary wave solutions of the coupled higher order nonlinear Schrodinger equation in nonlinear optics
    Porsezian, K.
    Kalithasan, B.
    CHAOS SOLITONS & FRACTALS, 2007, 31 (01) : 188 - 196
  • [42] Solitary waves solutions of a nonlinear Schrodinger equation
    Micheletti, AM
    Visetti, D
    NONLINEAR EQUATIONS: METHODS, MODELS AND APPLICATIONS, 2003, 54 : 217 - 224
  • [43] SOLITARY WAVE SOLUTIONS FOR SOME SYSTEMS OF COUPLED NONLINEAR EQUATIONS
    LU, BQ
    PAN, ZL
    QU, BZ
    JIANG, XF
    PHYSICS LETTERS A, 1993, 180 (1-2) : 61 - 64
  • [44] Combined solitary wave solutions for the inhomogeneous higher-order nonlinear Schrodinger equation
    Yang, RC
    Li, L
    Hao, RY
    Li, ZH
    Zhou, GS
    PHYSICAL REVIEW E, 2005, 71 (03):
  • [45] BISTABLE DARK SOLITARY WAVE SOLUTIONS OF THE GENERALIZED NONLINEAR SCHRODINGER-EQUATION AND THEIR STABILITY
    MULDER, LJ
    ENNS, RH
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1989, 25 (10) : 2205 - 2213
  • [46] Comment on "Optical solitary wave and shock solutions of the higher order nonlinear Schrodinger equation"
    Park, QH
    Han, SH
    PHYSICAL REVIEW LETTERS, 2000, 84 (16) : 3732 - 3732
  • [47] Solitary wave solutions for high dispersive cubic-quintic nonlinear Schrodinger equation
    Azzouzi, F.
    Triki, H.
    Mezghiche, K.
    El Akrmi, A.
    CHAOS SOLITONS & FRACTALS, 2009, 39 (03) : 1304 - 1307
  • [48] APPROXIMATE INTERACTING SOLITARY WAVE SOLUTIONS FOR A PAIR OF COUPLED NONLINEAR SCHRODINGER-EQUATIONS
    BHAKTA, JC
    PHYSICAL REVIEW E, 1994, 49 (06): : 5731 - 5741
  • [49] New solitary wave solutions to Biswas-Milovic and resonant nonlinear Schrodinger equations
    Salam, Wardat Us
    Tariq, Hira
    Rafeeq, Robina
    Ahmad, Hijaz
    Khedher, Khaled Mohamed
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (05)
  • [50] Localized Symmetric and Asymmetric Solitary Wave Solutions of Fractional Coupled Nonlinear Schrodinger Equations
    Zhang, Sheng
    Zhu, Feng
    Xu, Bo
    SYMMETRY-BASEL, 2023, 15 (06):