MULTIPLE SOLITARY WAVE SOLUTIONS OF NONLINEAR SCHRODINGER SYSTEMS

被引:0
|
作者
Tian, Rushun [1 ]
Wang, Zhi-Qiang [1 ]
机构
[1] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
关键词
Nonlinear Schrodinger system; Nehari manifold; a Z(N)-index theory; BOUND-STATES; GROUND-STATES; EQUATIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the N-coupled nonlinear elliptic system (P) {-Delta U-j + U-j = mu U-j(3) + beta U-j Sigma(k not equal j) U-k(2) in Omega, U-j > 0 in Omega, U-j = 0 on partial derivative Omega, j = 1, ... , N. where Omega is a smooth and bounded (or unbounded if Omega is radially symmetric) domain in R-n, n <= 3. By using a Z(N) index theory, we prove the existence of multiple solutions of (P) and show the dependence of multiplicity results on the coupling constant beta.
引用
下载
收藏
页码:203 / 223
页数:21
相关论文
共 50 条
  • [32] Variational Principles and Solitary Wave Solutions of Generalized Nonlinear Schrodinger Equation in the Ocean
    Liu, Meng-Zhu
    Cao, Xiao-Qun
    Zhu, Xiao-Qian
    Liu, Bai-Nian
    Peng, Ke-Cheng
    JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2021, 7 (03): : 1639 - 1648
  • [33] Novel and accurate solitary wave solutions of the conformable fractional nonlinear Schrodinger equation
    Zhao, Dexu
    Lu, Dianchen
    Salama, Samir A.
    Yongphet, Piyaphong
    Khater, Mostafa M. A.
    JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2022, 41 (02) : 488 - 499
  • [34] Solitary wave solutions for nonlinear fractional Schrodinger equation in Gaussian nonlocal media
    Zou, Guang-an
    Wang, Bo
    APPLIED MATHEMATICS LETTERS, 2019, 88 : 50 - 57
  • [35] SOLITARY-WAVE SOLUTIONS OF A FORCED NONLINEAR SCHRODINGER-EQUATION WITH DAMPING
    SASAKI, K
    OHYA, R
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1994, 63 (02) : 493 - 499
  • [36] Multiple positive normalized solutions for nonlinear Schrodinger systems
    Gou, Tianxiang
    Jeanjean, Louis
    NONLINEARITY, 2018, 31 (05) : 2319 - 2345
  • [37] Instability of solitary wave solutions for derivative nonlinear Schrodinger equation in endpoint case
    Ning, Cui
    Ohta, Masahito
    Wu, Yifei
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (03) : 1671 - 1689
  • [38] Stability of bright solitary-wave solutions to perturbed nonlinear Schrodinger equations
    Kapitula, T
    Sandstede, B
    PHYSICA D, 1998, 124 (1-3): : 58 - 103
  • [39] New types of solitary wave solutions for the higher order nonlinear Schrodinger equation
    Li, ZH
    Li, L
    Tian, HP
    Zhou, GS
    PHYSICAL REVIEW LETTERS, 2000, 84 (18) : 4096 - 4099
  • [40] Solitary wave solutions for nonlinear Schrodinger equation with non-polynomial nonlinearity
    Gupta, Rama
    Kumar, C. N.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2013, 222 (3-4): : 609 - 613