MULTIPLE SOLITARY WAVE SOLUTIONS OF NONLINEAR SCHRODINGER SYSTEMS

被引:0
|
作者
Tian, Rushun [1 ]
Wang, Zhi-Qiang [1 ]
机构
[1] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
关键词
Nonlinear Schrodinger system; Nehari manifold; a Z(N)-index theory; BOUND-STATES; GROUND-STATES; EQUATIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the N-coupled nonlinear elliptic system (P) {-Delta U-j + U-j = mu U-j(3) + beta U-j Sigma(k not equal j) U-k(2) in Omega, U-j > 0 in Omega, U-j = 0 on partial derivative Omega, j = 1, ... , N. where Omega is a smooth and bounded (or unbounded if Omega is radially symmetric) domain in R-n, n <= 3. By using a Z(N) index theory, we prove the existence of multiple solutions of (P) and show the dependence of multiplicity results on the coupling constant beta.
引用
收藏
页码:203 / 223
页数:21
相关论文
共 50 条
  • [1] Solitary wave solutions of chiral nonlinear Schrodinger equations
    Esen, Handenur
    Ozdemir, Neslihan
    Secer, Aydin
    Bayram, Mustafa
    Sulaiman, Tukur Abdulkadir
    Yusuf, Abdullahi
    MODERN PHYSICS LETTERS B, 2021, 35 (30):
  • [2] Solitary-wave solutions to nonlinear Schrodinger equations
    Morgan, SA
    Ballagh, RJ
    Burnett, K
    PHYSICAL REVIEW A, 1997, 55 (06) : 4338 - 4345
  • [3] Solitary wave solutions of coupled nonlinear Schrodinger equations
    Erbay, Husnu A.
    Bulletin of the Technical University of Istanbul, 1994, 47 (04):
  • [4] MULTIPLE SOLUTIONS FOR A NONLINEAR SCHRODINGER SYSTEMS
    Gao, Fengshuang
    Guo, Yuxia
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (02) : 1181 - 1204
  • [5] EXISTENCE AND NONLINEAR STABILITY OF SOLITARY WAVE SOLUTIONS FOR COUPLED SCHRODINGER-KDV SYSTEMS
    Cui, Pengxue
    Ji, Shuguan
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 2021
  • [6] On solitary wave solutions to the nonlinear Schrodinger equations with two parameters
    Wang, Fanglei
    An, Yukun
    MATHEMATISCHE NACHRICHTEN, 2014, 287 (8-9) : 1057 - 1070
  • [7] On exact solitary wave solutions of the nonlinear Schrodinger equation with a source
    Raju, TS
    Kumar, CN
    Panigrahi, PK
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (16): : L271 - L276
  • [8] Exact solitary wave solutions of the complex nonlinear Schrodinger equations
    Arbabi, Somayeh
    Najafi, Mohammad
    OPTIK, 2016, 127 (11): : 4682 - 4688
  • [9] Solitary wave solutions for a higher order nonlinear Schrodinger equation
    Triki, Houria
    Taha, Thiab R.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2012, 82 (07) : 1333 - 1340
  • [10] Solitary wave solutions of a generalized derivative nonlinear Schrodinger equation
    Wang Ming-Liang
    Mang Jin-Liang
    Li Xiang-Zheng
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 50 (01) : 39 - 42