The center of the affine nilTemperley-Lieb algebra

被引:4
|
作者
Benkart, Georgia [1 ]
Meinel, Joanna [2 ,3 ]
机构
[1] Univ Wisconsin Madison, Dept Math, Madison, WI 53706 USA
[2] Univ Bonn, Math Inst, D-53115 Bonn, Germany
[3] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany
关键词
SCHUBERT POLYNOMIALS; CANONICAL BASES;
D O I
10.1007/s00209-016-1660-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a description of the center of the affine nilTemperley-Lieb algebra based on a certain grading of the algebra and on a faithful representation of it on fermionic particle configurations. We present a normal form for monomials, hence construct a basis of the algebra, and use this basis to show that the affine nilTemperley-Lieb algebra is finitely generated over its center. As an application, we obtain a natural embedding of the affine nilTemperley-Lieb algebra on N generators into the affine nilTemperley-Lieb algebra on generators.
引用
收藏
页码:413 / 439
页数:27
相关论文
共 50 条
  • [21] Framization of the Temperley-Lieb algebra
    Goundaroulis, Dimos
    Juyumaya, Jesus
    Kontogeorgis, Aristides
    Lambropoulou, Sofia
    MATHEMATICAL RESEARCH LETTERS, 2017, 24 (02) : 299 - 345
  • [22] THE MODULAR TEMPERLEY-LIEB ALGEBRA
    Spencer, Robert A.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2023, 53 (01) : 177 - 208
  • [23] Meanders and the Temperley-Lieb algebra
    DiFrancesco, P
    Golinelli, O
    Guitter, E
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 186 (01) : 1 - 59
  • [24] The Schwartz algebra of an affine Hecke algebra
    Delorme, Patrick
    Opdam, Eric M.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 625 : 59 - 114
  • [25] Graphical Affine Algebra
    Bonchi, Filippo
    Piedeleu, Robin
    Sobocinski, Pawel
    Zanasi, Fabio
    2019 34TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS), 2019,
  • [26] The Fibonacci Model and the Temperley-Lieb Algebra
    Kauffman, Louis H.
    Lomonaco, Samuel J., Jr.
    QUANTUM INFORMATION AND COMPUTATION VII, 2009, 7342
  • [27] Center of the quantum affine vertex algebra associated with trigonometric R-matrix
    Kozic, Slaven
    Molev, Alexander
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (32)
  • [28] THE FIBONACCI MODEL AND THE TEMPERLEY-LIEB ALGEBRA
    Kauffman, Louis H.
    Lomonaco, Samuel J., Jr.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2008, 22 (29): : 5065 - 5080
  • [29] THE TEMPERLEY-LIEB ALGEBRA AT ROOTS OF UNITY
    GOODMAN, FM
    WENZL, H
    PACIFIC JOURNAL OF MATHEMATICS, 1993, 161 (02) : 307 - 334
  • [30] Seminormal forms for the Temperley-Lieb algebra
    Bastias, Katherine Ormeno
    Ryom-Hansen, Steen
    JOURNAL OF ALGEBRA, 2025, 662 : 852 - 901