The center of the affine nilTemperley-Lieb algebra

被引:4
|
作者
Benkart, Georgia [1 ]
Meinel, Joanna [2 ,3 ]
机构
[1] Univ Wisconsin Madison, Dept Math, Madison, WI 53706 USA
[2] Univ Bonn, Math Inst, D-53115 Bonn, Germany
[3] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany
关键词
SCHUBERT POLYNOMIALS; CANONICAL BASES;
D O I
10.1007/s00209-016-1660-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a description of the center of the affine nilTemperley-Lieb algebra based on a certain grading of the algebra and on a faithful representation of it on fermionic particle configurations. We present a normal form for monomials, hence construct a basis of the algebra, and use this basis to show that the affine nilTemperley-Lieb algebra is finitely generated over its center. As an application, we obtain a natural embedding of the affine nilTemperley-Lieb algebra on N generators into the affine nilTemperley-Lieb algebra on generators.
引用
收藏
页码:413 / 439
页数:27
相关论文
共 50 条
  • [31] Ribbon Graphs and Temperley-Lieb Algebra
    Chbili, Nafaa
    KNOT THEORY AND ITS APPLICATIONS, 2016, 670 : 299 - 312
  • [32] THE FIBONACCI MODEL AND THE TEMPERLEY-LIEB ALGEBRA
    Kauffman, Louis H.
    Lomonaco, Samuel J., Jr.
    STATISTICAL PHYSICS, HIGH ENERGY, CONDENSED MATTER AND MATHEMATICAL PHYSICS, 2008, : 277 - +
  • [33] A Temperley-Lieb Analogue for the BMW Algebra
    Lehrer, G. I.
    Zhang, R. B.
    REPRESENTATION THEORY OF ALGEBRAIC GROUPS AND QUANTUM GROUPS, 2010, 284 : 155 - +
  • [34] Dimer representations of the Temperley-Lieb algebra
    Morin-Duchesne, Alexi
    Rasmussen, Jorgen
    Ruelle, Philippe
    NUCLEAR PHYSICS B, 2015, 890 : 363 - 387
  • [35] Categorification of the Temperley-Lieb algebra by bimodules
    Gobet, Thomas
    JOURNAL OF ALGEBRA, 2014, 419 : 277 - 317
  • [36] From linear algebra via affine algebra to projective algebra
    Bertram, W
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 378 : 109 - 134
  • [37] On representations of affine Temperley-Lieb algebras - II
    Erdmann, K
    Green, RM
    PACIFIC JOURNAL OF MATHEMATICS, 1999, 191 (02) : 243 - 273
  • [38] The bubble algebra: structure of a two-colour Temperley-Lieb Algebra
    Grimm, U
    Martin, PP
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (42): : 10551 - 10571
  • [39] Teleportation, braid group and Temperley-Lieb algebra
    Zhang, Yong
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (37): : 11599 - 11622
  • [40] On spin systems related to the Temperley-Lieb algebra
    Kulish, PP
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (38): : L489 - L493