Quantile-slicing estimation for dimension reduction in regression

被引:3
|
作者
Kim, Hyungwoo [1 ]
Wu, Yichao [2 ]
Shin, Seung Jun [1 ]
机构
[1] Korea Univ, Dept Stat, 145 Anam Ro, Seoul 02841, South Korea
[2] Univ Illinois, Dept Math Stat & Comp Sci, 851 S Morgan St, Chicago, IL 60607 USA
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
Heteroscedasticity; Kernel quantile regression; Quantile-slicing estimation; Sufficient dimension reduction; PRINCIPAL HESSIAN DIRECTIONS; SLICED INVERSE REGRESSION; CENTRAL SUBSPACE; SELECTION; NUMBER;
D O I
10.1016/j.jspi.2018.03.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Sufficient dimension reduction (SDR) has recently received much attention due to its promising performance under less stringent model assumptions. We propose a new class of SDR approaches based on slicing conditional quantiles: quantile-slicing mean estimation (QUME) and quantile-slicing variance estimation (QUVE). Quantile-slicing is particularly useful when the quantile function is more efficient to capture underlying model structure than the response itself, for example, when heteroscedasticity exists in a regression context. Both simulated and real data analysis results demonstrate promising performance of the proposed quantile-slicing SDR estimation methods. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [1] A quantile-slicing approach for sufficient dimension reduction with censored responses
    Kim, Hyungwoo
    Shin, Seung Jun
    BIOMETRICAL JOURNAL, 2021, 63 (01) : 201 - 212
  • [2] Quantile based dimension reduction in censored regression
    Yan, Mei
    Kong, Efang
    Xia, Yingcun
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 142 (142)
  • [3] Tail dimension reduction for extreme quantile estimation
    Gardes, Laurent
    EXTREMES, 2018, 21 (01) : 57 - 95
  • [4] Quantile treatment effect estimation with dimension reduction
    Zhang, Ying
    Wang, Lei
    Yu, Menggang
    Shao, Jun
    STATISTICAL THEORY AND RELATED FIELDS, 2020, 4 (02) : 202 - 213
  • [5] Tail dimension reduction for extreme quantile estimation
    Laurent Gardes
    Extremes, 2018, 21 : 57 - 95
  • [6] Principal quantile regression for sufficient dimension reduction with heteroscedasticity
    Wang, Chong
    Shin, Seung Jun
    Wu, Yichao
    ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (02): : 2114 - 2140
  • [7] Dimension Reduction in Regressions Through Cumulative Slicing Estimation
    Zhu, Li-Ping
    Zhu, Li-Xing
    Feng, Zheng-Hui
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (492) : 1455 - 1466
  • [8] Dimension reduction for regression estimation with nearest neighbor method
    Cadre, Benoit
    Dong, Qian
    ELECTRONIC JOURNAL OF STATISTICS, 2010, 4 : 436 - 460
  • [9] Dimension reduction and coefficient estimation in multivariate linear regression
    Yuan, Ming
    Ekici, Ali
    Lu, Zhaosong
    Monteiro, Renato
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2007, 69 : 329 - 346
  • [10] SLICING-FREE INVERSE REGRESSION IN HIGH-DIMENSIONAL SUFFICIENT DIMENSION REDUCTION
    Mai, Qing
    Shao, Xiaofeng
    Wang, Runmin
    Zhang, Xin
    STATISTICA SINICA, 2025, 35 (01) : 1 - 23