Cooperative transport mechanism of human monocarboxylate transporter 2

被引:74
|
作者
Zhang, Bo [1 ]
Jin, Qiuheng [1 ]
Xu, Lizhen [2 ,3 ]
Li, Ningning [4 ]
Meng, Ying [5 ]
Chang, Shenghai [6 ,7 ]
Zheng, Xiang [8 ]
Wang, Jiangqin [6 ,9 ]
Chen, Yuan [8 ]
Neculai, Dante [5 ]
Gao, Ning [4 ]
Zhang, Xiaokang [10 ]
Yang, Fan [2 ,3 ]
Guo, Jiangtao [6 ,9 ]
Ye, Sheng [1 ,10 ]
机构
[1] Zhejiang Univ, Life Sci Inst, Hangzhou 310058, Peoples R China
[2] Zhejiang Univ, Sch Med, NHC & CAMS Key Lab Med Neurobiol, Inst Neurosci,Affiliated Hosp 1,Dept Biophys, Hangzhou 310058, Peoples R China
[3] Zhejiang Univ, Sch Med, NHC & CAMS Key Lab Med Neurobiol, Inst Neurosci,Affiliated Hosp 1,Kidney Dis Ctr, Hangzhou 310058, Peoples R China
[4] Peking Univ, Peking Tsinghua Ctr Life Sci, Sch Life Sci, State Key Lab Membrane Biol, Beijing, Peoples R China
[5] Zhejiang Univ, Sch Basic Med Sci, Dept Cell Biol, Hangzhou, Zhejiang, Peoples R China
[6] Zhejiang Univ, Sir Run Run Shaw Hosp, Dept Pathol, Dept Biophys,Sch Med, Hangzhou 310058, Peoples R China
[7] Zhejiang Univ, Ctr Cryo Electron Microscopy, Sch Med, Hangzhou 310058, Peoples R China
[8] Zhejiang A&F Univ, State Key Lab Subtrop Silviculture, 666 Wusu St, Linan 311300, Peoples R China
[9] Zhejiang Univ, Inst Neurosci, Dept Biophys, NHC & CAMS Key Lab Med Neurobiol,Sch Med, Hangzhou 310058, Peoples R China
[10] Tianjin Univ, Sch Life Sci, Tianjin Key Lab Funct & Applicat Biol Macromol St, 92 Weijin Rd, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
SLC16 GENE FAMILY; TRANSMEMBRANE HELICES; ANCILLARY PROTEIN; VOLTAGE SENSOR; MCT2; PYRUVATE; CONFORMATION; INHIBITION; METABOLISM; PREDICTION;
D O I
10.1038/s41467-020-16334-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Proton-linked monocarboxylate transporters (MCTs) must transport monocarboxylate efficiently to facilitate monocarboxylate efflux in glycolytically active cells, and transport monocarboxylate slowly or even shut down to maintain a physiological monocarboxylate concentration in glycolytically inactive cells. To discover how MCTs solve this fundamental aspect of intracellular monocarboxylate homeostasis in the context of multicellular organisms, we analyzed pyruvate transport activity of human monocarboxylate transporter 2 (MCT2). Here we show that MCT2 transport activity exhibits steep dependence on substrate concentration. This property allows MCTs to turn on almost like a switch, which is physiologically crucial to the operation of MCTs in the cellular context. We further determined the cryo-electron microscopy structure of the human MCT2, demonstrating that the concentration sensitivity of MCT2 arises from the strong inter-subunit cooperativity of the MCT2 dimer during transport. These data establish definitively a clear example of evolutionary optimization of protein function. Proton-linked monocarboxylate transporters (MCTs) facilitate monocarboxylate efflux in glycolytically active cells and regulate transport down in glycolytically inactive cells. Here authors show a steep dependence of human MCT2 activity on substrate concentration and show the structural basis of cooperative transport.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Monocarboxylate transporter 1 is deficient on microvessels in the human epileptogenic hippocampus
    Lauritzen, Fredrik
    de Lanerolle, Nihal C.
    Lee, Tih-Shih W.
    Spencer, Dennis D.
    Kim, Jung H.
    Bergersen, Linda H.
    Eid, Tore
    NEUROBIOLOGY OF DISEASE, 2011, 41 (02) : 577 - 584
  • [32] MECHANISMS OF MONOCARBOXYLATE TRANSPORT IN HUMAN-ERYTHROCYTES
    DEUTICKE, B
    FORST, J
    ARCHIVOS DE BIOLOGIA Y MEDICINA EXPERIMENTALES, 1980, 13 (01): : 151 - 151
  • [33] Thyroid hormone transport by the human monocarboxylate transporter 8 and its rate-limiting role in intracellular metabolism
    Friesema, Edith C. H.
    Kuiper, George G. J. M.
    Jansen, Jurgen
    Visser, Theo J.
    Kester, Monique H. A.
    MOLECULAR ENDOCRINOLOGY, 2006, 20 (11) : 2761 - 2772
  • [34] Transport of ketone bodies and lactate in the sheep ruminal epithelium by monocarboxylate transporter 1
    Müller, F
    Huber, K
    Pfannkuche, H
    Aschenbach, JR
    Breves, G
    Gäbel, G
    AMERICAN JOURNAL OF PHYSIOLOGY-GASTROINTESTINAL AND LIVER PHYSIOLOGY, 2002, 283 (05): : G1139 - G1146
  • [35] Transport and inhibition mechanism of the human SGLT2–MAP17 glucose transporter
    Masahiro Hiraizumi
    Tomoya Akashi
    Kouta Murasaki
    Hiroyuki Kishida
    Taichi Kumanomidou
    Nao Torimoto
    Osamu Nureki
    Ikuko Miyaguchi
    Nature Structural & Molecular Biology, 2024, 31 : 159 - 169
  • [36] A Thyroid Hormone Analog with Reduced Dependence on the Monocarboxylate Transporter 8 for Tissue Transport
    Di Cosmo, Caterina
    Liao, Xiao-Hui
    Dumitrescu, Alexandra M.
    Weiss, Roy E.
    Refetoff, Samuel
    ENDOCRINOLOGY, 2009, 150 (09) : 4450 - 4458
  • [37] The monocarboxylate transporter familyuRole and regulation
    Halestrap, Andrew P.
    Wilson, Marieangela C.
    IUBMB LIFE, 2012, 64 (02) : 109 - 119
  • [38] Transport function, regulation, and biology of human monocarboxylate transporter 1 (hMCT1) and 4 (hMCT4)
    Kobayashi, Masaki
    Narumi, Katsuya
    Furugen, Ayako
    Iseki, Ken
    PHARMACOLOGY & THERAPEUTICS, 2021, 226
  • [39] Extracellular lysine 38 plays a crucial role in pH-dependent transport via human monocarboxylate transporter 1
    Yamaguchi, Atsushi
    Futagi, Yuya
    Kobayashi, Masaki
    Narumi, Katsuya
    Furugen, Ayako
    Iseki, Ken
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2020, 1862 (02):
  • [40] Induction of monocarboxylate transporter 2 expression and ketone transport following traumatic brain injury in juvenile and adult rats
    Prins, M. L.
    Giza, C. C.
    DEVELOPMENTAL NEUROSCIENCE, 2006, 28 (4-5) : 447 - 456