Cooperative transport mechanism of human monocarboxylate transporter 2

被引:74
|
作者
Zhang, Bo [1 ]
Jin, Qiuheng [1 ]
Xu, Lizhen [2 ,3 ]
Li, Ningning [4 ]
Meng, Ying [5 ]
Chang, Shenghai [6 ,7 ]
Zheng, Xiang [8 ]
Wang, Jiangqin [6 ,9 ]
Chen, Yuan [8 ]
Neculai, Dante [5 ]
Gao, Ning [4 ]
Zhang, Xiaokang [10 ]
Yang, Fan [2 ,3 ]
Guo, Jiangtao [6 ,9 ]
Ye, Sheng [1 ,10 ]
机构
[1] Zhejiang Univ, Life Sci Inst, Hangzhou 310058, Peoples R China
[2] Zhejiang Univ, Sch Med, NHC & CAMS Key Lab Med Neurobiol, Inst Neurosci,Affiliated Hosp 1,Dept Biophys, Hangzhou 310058, Peoples R China
[3] Zhejiang Univ, Sch Med, NHC & CAMS Key Lab Med Neurobiol, Inst Neurosci,Affiliated Hosp 1,Kidney Dis Ctr, Hangzhou 310058, Peoples R China
[4] Peking Univ, Peking Tsinghua Ctr Life Sci, Sch Life Sci, State Key Lab Membrane Biol, Beijing, Peoples R China
[5] Zhejiang Univ, Sch Basic Med Sci, Dept Cell Biol, Hangzhou, Zhejiang, Peoples R China
[6] Zhejiang Univ, Sir Run Run Shaw Hosp, Dept Pathol, Dept Biophys,Sch Med, Hangzhou 310058, Peoples R China
[7] Zhejiang Univ, Ctr Cryo Electron Microscopy, Sch Med, Hangzhou 310058, Peoples R China
[8] Zhejiang A&F Univ, State Key Lab Subtrop Silviculture, 666 Wusu St, Linan 311300, Peoples R China
[9] Zhejiang Univ, Inst Neurosci, Dept Biophys, NHC & CAMS Key Lab Med Neurobiol,Sch Med, Hangzhou 310058, Peoples R China
[10] Tianjin Univ, Sch Life Sci, Tianjin Key Lab Funct & Applicat Biol Macromol St, 92 Weijin Rd, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
SLC16 GENE FAMILY; TRANSMEMBRANE HELICES; ANCILLARY PROTEIN; VOLTAGE SENSOR; MCT2; PYRUVATE; CONFORMATION; INHIBITION; METABOLISM; PREDICTION;
D O I
10.1038/s41467-020-16334-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Proton-linked monocarboxylate transporters (MCTs) must transport monocarboxylate efficiently to facilitate monocarboxylate efflux in glycolytically active cells, and transport monocarboxylate slowly or even shut down to maintain a physiological monocarboxylate concentration in glycolytically inactive cells. To discover how MCTs solve this fundamental aspect of intracellular monocarboxylate homeostasis in the context of multicellular organisms, we analyzed pyruvate transport activity of human monocarboxylate transporter 2 (MCT2). Here we show that MCT2 transport activity exhibits steep dependence on substrate concentration. This property allows MCTs to turn on almost like a switch, which is physiologically crucial to the operation of MCTs in the cellular context. We further determined the cryo-electron microscopy structure of the human MCT2, demonstrating that the concentration sensitivity of MCT2 arises from the strong inter-subunit cooperativity of the MCT2 dimer during transport. These data establish definitively a clear example of evolutionary optimization of protein function. Proton-linked monocarboxylate transporters (MCTs) facilitate monocarboxylate efflux in glycolytically active cells and regulate transport down in glycolytically inactive cells. Here authors show a steep dependence of human MCT2 activity on substrate concentration and show the structural basis of cooperative transport.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] Monocarboxylate transporter (MCT)-mediated transport of γ-hydroxybutyric acid in human intestinal Caco-2 cells
    Felmlee, Melanie Ann
    Lam, Wing Ki
    Morris, Marilyn E.
    FASEB JOURNAL, 2009, 23
  • [12] Characterization of Monocarboxylate Transporter 6: Expression in Human Intestine and Transport of the Antidiabetic Drug Nateglinide
    Kohyama, Noriko
    Shiokawa, Hisae
    Ohbayashi, Masayuki
    Kobayashi, Yasuna
    Yamamoto, Toshinori
    DRUG METABOLISM AND DISPOSITION, 2013, 41 (11) : 1883 - 1887
  • [13] The role of monocarboxylate transporter 2 and 4 in the transport of γ-hydroxybutyric acid in mammalian cells
    Wang, Qi
    Morris, Marilyn E.
    DRUG METABOLISM AND DISPOSITION, 2007, 35 (08) : 1393 - 1399
  • [14] Redistribution of monocarboxylate transporter 2 on the surface of astrocytes in the human epileptogenic hippocampus
    Lauritzen, Fredrik
    Heuser, Kjell
    De lanerolle, Nihal C.
    Lee, Tih-Shih W.
    Spencer, Dennis D.
    Kim, Jung H.
    Gjedde, Albert
    Eid, Tore
    Bergersen, Linda H.
    GLIA, 2012, 60 (07) : 1172 - 1181
  • [15] Identification of the mechanism of action of CYT-0851, an inhibitor of monocarboxylate transporter (MCT) mediated lactate transport
    Bradley, B.
    Belmonte, M. A.
    Kansara, S.
    Blank, J. L.
    Cryan, L.
    Reilly, N. M.
    Murali, V.
    Miller, D. H.
    Secrist, J. P.
    EUROPEAN JOURNAL OF CANCER, 2022, 174 : S24 - S25
  • [16] Lactate transport in skeletal muscle - role and regulation of the monocarboxylate transporter
    Juel, C
    Halestrap, AP
    JOURNAL OF PHYSIOLOGY-LONDON, 1999, 517 (03): : 633 - 642
  • [17] Authentic Bosutinib Inhibits Triiodothyronine Transport by Monocarboxylate Transporter 8
    Braun, Doreen
    Schweizer, Ulrich
    THYROID, 2014, 24 (05) : 926 - 927
  • [18] MONOCARBOXYLATE TRANSPORTER 10: SUBSTRATE-DEPENDENT MODE OF TRANSPORT
    Rodriguez, Acilegna
    Graves, Megan
    Du, Yewei
    Kaufman, Roberta
    Chen, Jian-Lu
    Sacca, Makenzie
    Warren, Mark
    DRUG METABOLISM AND PHARMACOKINETICS, 2024, 55
  • [19] Transport activity of the monocarboxylate transporter 1 is increased by carbonic anhydrase
    不详
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2005, 34 (06): : 799 - 799
  • [20] Reassessment of the Transport Mechanism of the Human Zinc Transporter SLC39A2
    Franz, Marie C.
    Pujol-Gimenez, Jonai
    Montalbetti, Nicolas
    Fernandez-Tenorio, Miguel
    DeGrado, Timothy R.
    Niggli, Ernst
    Romero, Michael F.
    Hediger, Matthias A.
    BIOCHEMISTRY, 2018, 57 (26) : 3976 - 3986