Cooperative transport mechanism of human monocarboxylate transporter 2

被引:74
|
作者
Zhang, Bo [1 ]
Jin, Qiuheng [1 ]
Xu, Lizhen [2 ,3 ]
Li, Ningning [4 ]
Meng, Ying [5 ]
Chang, Shenghai [6 ,7 ]
Zheng, Xiang [8 ]
Wang, Jiangqin [6 ,9 ]
Chen, Yuan [8 ]
Neculai, Dante [5 ]
Gao, Ning [4 ]
Zhang, Xiaokang [10 ]
Yang, Fan [2 ,3 ]
Guo, Jiangtao [6 ,9 ]
Ye, Sheng [1 ,10 ]
机构
[1] Zhejiang Univ, Life Sci Inst, Hangzhou 310058, Peoples R China
[2] Zhejiang Univ, Sch Med, NHC & CAMS Key Lab Med Neurobiol, Inst Neurosci,Affiliated Hosp 1,Dept Biophys, Hangzhou 310058, Peoples R China
[3] Zhejiang Univ, Sch Med, NHC & CAMS Key Lab Med Neurobiol, Inst Neurosci,Affiliated Hosp 1,Kidney Dis Ctr, Hangzhou 310058, Peoples R China
[4] Peking Univ, Peking Tsinghua Ctr Life Sci, Sch Life Sci, State Key Lab Membrane Biol, Beijing, Peoples R China
[5] Zhejiang Univ, Sch Basic Med Sci, Dept Cell Biol, Hangzhou, Zhejiang, Peoples R China
[6] Zhejiang Univ, Sir Run Run Shaw Hosp, Dept Pathol, Dept Biophys,Sch Med, Hangzhou 310058, Peoples R China
[7] Zhejiang Univ, Ctr Cryo Electron Microscopy, Sch Med, Hangzhou 310058, Peoples R China
[8] Zhejiang A&F Univ, State Key Lab Subtrop Silviculture, 666 Wusu St, Linan 311300, Peoples R China
[9] Zhejiang Univ, Inst Neurosci, Dept Biophys, NHC & CAMS Key Lab Med Neurobiol,Sch Med, Hangzhou 310058, Peoples R China
[10] Tianjin Univ, Sch Life Sci, Tianjin Key Lab Funct & Applicat Biol Macromol St, 92 Weijin Rd, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
SLC16 GENE FAMILY; TRANSMEMBRANE HELICES; ANCILLARY PROTEIN; VOLTAGE SENSOR; MCT2; PYRUVATE; CONFORMATION; INHIBITION; METABOLISM; PREDICTION;
D O I
10.1038/s41467-020-16334-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Proton-linked monocarboxylate transporters (MCTs) must transport monocarboxylate efficiently to facilitate monocarboxylate efflux in glycolytically active cells, and transport monocarboxylate slowly or even shut down to maintain a physiological monocarboxylate concentration in glycolytically inactive cells. To discover how MCTs solve this fundamental aspect of intracellular monocarboxylate homeostasis in the context of multicellular organisms, we analyzed pyruvate transport activity of human monocarboxylate transporter 2 (MCT2). Here we show that MCT2 transport activity exhibits steep dependence on substrate concentration. This property allows MCTs to turn on almost like a switch, which is physiologically crucial to the operation of MCTs in the cellular context. We further determined the cryo-electron microscopy structure of the human MCT2, demonstrating that the concentration sensitivity of MCT2 arises from the strong inter-subunit cooperativity of the MCT2 dimer during transport. These data establish definitively a clear example of evolutionary optimization of protein function. Proton-linked monocarboxylate transporters (MCTs) facilitate monocarboxylate efflux in glycolytically active cells and regulate transport down in glycolytically inactive cells. Here authors show a steep dependence of human MCT2 activity on substrate concentration and show the structural basis of cooperative transport.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Inhibitory effects of statins on human monocarboxylate transporter 4
    Kobayashi, Masaki
    Otsuka, Yukio
    Itagaki, Shirou
    Hirano, Takeshi
    Iseki, Ken
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2006, 317 (01) : 19 - 25
  • [22] Influence of Ageing on Monocarboxylate Transporter in Human Skeletal Muscle
    Richards, William
    Moustafa-Bayoumi, Moustafa
    Gerken, Andy
    Kirby, Timothy E.
    Hinchcliff, Kenneth W.
    Devor, Steven T.
    MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, 2006, 38 (05): : S551 - S552
  • [23] Evidence for a Homodimeric Structure of Human Monocarboxylate Transporter 8
    Visser, W. Edward
    Philp, Nancy J.
    van Dijk, Thamar B.
    Klootwijk, Wim
    Friesema, Edith C. H.
    Jansen, Jurgen
    Beesley, Philip W.
    Ianculescu, Alexandra G.
    Visser, Theo J.
    ENDOCRINOLOGY, 2009, 150 (11) : 5163 - 5170
  • [24] Molecular Mechanism of Dopamine Transport by Human Dopamine Transporter
    Cheng, Mary Hongying
    Bahar, Ivet
    STRUCTURE, 2015, 23 (11) : 2171 - 2181
  • [25] Transport and uptake of nateglinide in Caco-2 cells and its inhibitory effect on human monocarboxylate transporter MCT1
    Okamura, A
    Emoto, A
    Koyabu, N
    Ohtani, H
    Sawada, Y
    BRITISH JOURNAL OF PHARMACOLOGY, 2002, 137 (03) : 391 - 399
  • [26] Transport mechanism of the organic cation transporter 2
    Budiman, T
    Bamberg, E
    Koepsell, H
    Nagel, GF
    JOURNAL OF GENERAL PHYSIOLOGY, 2000, 116 (01): : 21A - 21A
  • [27] Identification of a selective inhibitor of human monocarboxylate transporter 4
    Futagi, Yuya
    Kobayashi, Masaki
    Narumi, Katsuya
    Furugen, Ayako
    Iseki, Ken
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2018, 495 (01) : 427 - 432
  • [28] Characterization of monocarboxylate transport in human kidney HK-2 cells
    Wang, Qi
    Lu, Ye
    Yuan, Min
    Darling, Inger M.
    Repasky, Elizabeth A.
    Morris, Marilyn E.
    MOLECULAR PHARMACEUTICS, 2006, 3 (06) : 675 - 685
  • [29] Transport and inhibition mechanism of the human SGLT2-MAP17 glucose transporter
    Hiraizumi, Masahiro
    Akashi, Tomoya
    Murasaki, Kouta
    Kishida, Hiroyuki
    Kumanomidou, Taichi
    Torimoto, Nao
    Nureki, Osamu
    Miyaguchi, Ikuko
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2024, 31 (01) : 159 - 169
  • [30] Distribution of the monocarboxylate transporter MCT2 in human cerebral cortex: An immunohistochemical study
    Chiry, Oriana
    Fishbein, William N.
    Merezhinskaya, Natalya
    Clarke, Stephanie
    Galuske, Ralf
    Magistretti, Pierre J.
    Pellerin, Luc
    BRAIN RESEARCH, 2008, 1226 : 61 - 69